Abstract

This paper presents the recent advancements and forthcoming challenges for abrasive machining with specific focus on the advancement of industrial applications. The most significant advancement of abrasive machining is in grinding applications of cubic boron nitride (CBN) abrasive. The advancement of CBN wheels, application of grinding models and simulation tools, development of high stiffness multi-axis grinding machines, and high-speed spindles have contributed to the growing industrial applications of grinding with plated and vitrified CBN wheels. Sustainability of abrasive machining also received more attention during the past two decades as global Fortune 500 corporations have included sustainability as a corporate goal. Abrasive machining will continue to be a critical process for manufacturing precision components in the decades to come. The advancement and adoption of additive manufacturing creates more unique challenges for abrasive machining of complex geometrical features which were impossible a few years ago. Furthermore, strategies for abrasive machining are needed to utilize the massive amount of process data available by connected factories. Therefore, it is expected that sustainability and data analytics for abrasive machining will become a more important focus for various manufacturers.

References

References
1.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Industrial Press
,
New York
.
2.
Chiu
,
N.
, and
Malkin
,
S.
,
1993
, “
Computer Simulation for Cylindrical Plunge Grinding
,”
Ann. CIRP
,
42
(
1
), pp.
383
387
. 10.1016/S0007-8506(07)62467-6
3.
Chiu
,
N.
, and
Malkin
,
S.
,
1994
, “
Computer Simulation for Creep-Feed Form Grinding
,”
Trans. North Am. Manuf. Res. Inst. (NAMRI)/SME
,
22
, pp.
119
126
.
4.
Shanbhag
,
N.
,
Rajan
,
M.
,
Manjunathaiah
,
J.
,
Krishnamurty
,
S.
, and
Malkin
,
S.
,
1998
, “
Analysis and Simulation of Double Disk Grinding
,”
Trans. North Am. Manuf. Res. Inst. (NAMRI)/SME
,
28
, pp.
111
116
.
5.
Guo
,
C.
, and
Malkin
,
S.
,
1997
, “
Computer Simulation of Below-Center and Above-Center Centerless Grinding
,”
Mach. Sci. Technol.
,
1
(
2
), pp.
235
249
. 10.1080/10940349708945649
6.
Guo
,
C.
,
2012
, “
Modeling and Simulation of Mold and Die Grinding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041007
.
7.
Guo
,
C.
,
Ranganath
,
S.
,
McIntosh
,
D.
, and
Elfizy
,
A.
,
2008
, “
Virtual High Performance Grinding With CBN Wheels
,”
Ann. CIRP
,
57
(
1
), pp.
325
328
. 10.1016/j.cirp.2008.03.071
8.
Aspinwall
,
D. K.
,
Soo
,
S. L.
,
Curtis
,
D. T.
, and
Mantle
,
A. L.
,
2007
, “
Profiled Superabrasive Grinding Wheels for the Machining of a Nickel Based Superalloy
,”
Ann. CIRP
,
57
(
1
), pp.
325
328
.
9.
Shi
,
Z.
,
Elfizy
,
A.
, and
Attia
,
H.
,
2014
, “
An Experimental Study on Grinding Fir-Tree Root Forms Using Vitrified CBN Wheels
,”
Adv. Mater. Res.
,
1017
, pp.
55
60
. 10.4028/www.scientific.net/AMR.1017.55
10.
Shih
,
A. J.
,
Tai
,
B.
,
Zhang
,
L.
, and
Sullivan
,
S.
,
2012
, “
Prediction of Bone Grinding Temperature in Skull Base Neurosurgery
,”
CIRP Ann.
,
61
(
1
), pp.
307
310
. 10.1016/j.cirp.2012.03.078
11.
Zhang
,
L.
,
Tai
,
B. L.
,
Wang
,
A.
, and
Shih
,
A. J.
,
2013
, “
Mist Cooling in Neurosurgical Bone Grinding
,”
CIRP Ann.
,
62
(
1
), pp.
367
370
. 10.1016/j.cirp.2013.03.125
12.
Zhang
,
L.
,
Tai
,
B. L.
,
Wang
,
G.
,
Zhang
,
K.
,
Wang
,
G.
,
Sullivan
,
S.
, and
Shih
,
A. J.
,
2013
, “
Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1391
1398
. 10.1016/j.medengphy.2013.03.023
13.
Tai
,
B.
,
Zhang
,
L.
,
Wang
,
A. C.
,
Sullivan
,
S.
,
Wang
,
G. J.
, and
Shih
,
A. J.
,
2013
, “
Temperature Prediction in High Speed Bone Grinding Using Motor PWM Signal
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1545
1549
. 10.1016/j.medengphy.2013.05.011
14.
Zheng
,
Y. H.
,
Belmont
,
B.
, and
Shih
,
A. J.
,
2016
, “
Experimental Investigation of the Abrasive Crown Dynamics in Orbital Atherectomy
,”
Med. Eng. Phys.
,
38
(
7
), pp.
639
647
. 10.1016/j.medengphy.2016.04.006
15.
Zheng
,
Y.
,
Liu
,
Y.
,
Pitre
,
J.
,
Bull
,
J.
,
Gurm
,
H.
, and
Shih
,
A. J.
,
2018
, “
Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy With Particle Image Velocimetry Validation
,”
Ann. Biomed. Eng.
,
46
(
4
), pp.
567
578
. 10.1007/s10439-018-1984-z
16.
Liu
,
Y.
,
Li
,
B.
,
Zheng
,
Y.
, and
Shih
,
A. J.
,
2017
, “
Experiment and Smooth Particle Hydrodynamics Simulation of Debris Size in Grinding of Calcified Plaque in Atherectomy
,”
CIRP Ann.
,
66
(
1
), pp.
325
328
. 10.1016/j.cirp.2017.04.090
17.
Zheng
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
, and
Shih
,
A. J.
,
2019
, “
Multi-grain Smoothed Particle Hydrodynamics and Hertzian Contact Modeling of the Grinding Force in Atherectomy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041015
. 10.1115/1.4042603
18.
Liu
,
Y.
,
Liu
,
Y.
,
Zheng
,
Y.
,
Li
,
B.
, and
Shih
,
A. J.
,
2019
, “
Catheter Heat Generation and Temperature in Rotational Atherectomy
,”
Med. Eng. Phys.
,
70
, pp.
29
38
. 10.1016/j.medengphy.2019.06.014
19.
Shih
,
A. J.
,
Denkena
,
B.
,
Grove
,
T.
,
Curry
,
D.
,
Hocheng
,
H.
,
Tsai
,
H. Y.
,
Ohmori
,
H.
,
Katahira
,
K.
, and
Pei
,
Z. J.
,
2018
, “
Fixed Abrasive Machining of Non-Metallic Materials
,”
CIRP Ann.
,
67
(
2
), pp.
767
790
. 10.1016/j.cirp.2018.05.010
20.
Timken Internal Report #50454, Proposal for Process Development of High Stock Removal Grinding.
21.
Oliveira
,
J. F. G.
,
Silva
,
E. J.
,
Guo
,
C.
, and
Hashimoto
,
F.
,
2009
, “
Industrial Challenges in Grinding
,”
Ann. CIRP
,
58
(
2
), pp.
663
680
. 10.1016/j.cirp.2009.09.006
22.
Hitchiner
,
M. P.
,
1999
, “
Technical Advances in Creep-Feed Grinding of Superalloys With CBN
,”
The 3rd International Machining and Grinding Conference SME
,
Cincinnati
,
Oct
., pp.
627
652
.
23.
Xun
,
L.
,
Fanjun
,
M.
, and
Wei
,
C.
,
2015
, “
The CNC Grinding of Integrated Impeller With Electroplated CBN Wheel
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
1353
1361
. 10.1007/s00170-015-6904-x
24.
Bohr
,
S.
,
2017
, “Analytical Considerations of Highly Porous Bond Systems,” St. Gobain Abrasives, https://www.nortonabrasives.com/en-emea/resources/expertise/analytical-considerations-highly-porous-bond-systems, Accessed September 25, 2019.
25.
Technical Solutions for Creep Feed Grinding, Norton St. Gobain Form # 2596. https://www.nortonabrasives.com/sga-common/files/document/Technical_Solutions_for_Creepfeed_Grinding_in_the_Aerospace_Turbine_Markets_14.pdf, Accessed September 25, 2019.
26.
Guo
,
C.
,
Shi
,
Z.
,
Attia
,
H.
, and
Mclntosh
,
D.
,
2007
, “
Power and Wheel Wear for Grinding of Nickel Alloys With Plated CBN Wheels
,”
Ann. CIRP
,
56
(
1
), pp.
343
346
. 10.1016/j.cirp.2007.05.079
27.
Hitchiner
,
M.
,
1999
, Grinding of Aerospace Alloys With Vitrified CBN”, Abrasives Magazine, December/January, pp.
25
35
.
28.
Malkin
,
S.
, and
Guo
,
C.
,
2007
, “
Thermal Analysis in Grinding
,”
Ann. CIRP
,
56
(
2
), pp.
760
782
. 10.1016/j.cirp.2007.10.005
29.
Shi
,
Z.
,
Guo
,
C.
, and
Attia
,
H.
,
2014
, “
Exploration of a New Approach for Calibrating Grinding Power Model
,”
ASME International Manufacturing Science and Engineering Conference
,
Detroit
,
June
, Paper No. MSEC2014-3975, https://doi.org/10.1115/MSEC2014-3975.
30.
Shi
,
Z.
,
Elfizy
,
A.
, and
Attia
,
H.
,
2012
, “
Grinding Characteristics of a Nickel-Based Alloy Using Vitrified CBN Wheels
,”
Int. J. Abrasive Technol.
,
5
(
1
), pp.
1
16
. 10.1504/IJAT.2012.046827
31.
Hitchiner
,
M.
,
2007
, “
Grinding in Aerospace Industry
,”
Proceedings of the 10th International Symposium on Advances in Abrasive Technology
,
Michigan
,
Sept
, pp.
491
497
.
32.
Li
,
L.
, and
Sun
,
Y.
,
2012
, “
Experimental Investigation on Surface Integrity in Grinding Titanium Alloys With Small Vitrified CBN Wheel
,”
Appl. Mech. Mater.
,
117
, pp.
1483
1490
.10.4028/www.scientific.net/AMM.117-119.1483
33.
Xu
,
X.
,
Yu
,
Y.
, and
Huang
,
H.
,
2003
, “
Mechanisms of Abrasive Wear in the Grinding of Titanium (TC4) and Nickel (K417) Alloys
,”
Wear
,
255
(
7–12
), pp.
1421
1426
. 10.1016/S0043-1648(03)00163-7
34.
Zhang
,
X.
,
Liu
,
Z.
,
Guo
,
G.
,
An
,
Q.
, and
Chen
,
M.
,
2011
, “
Experimental Research of Grinding TC4 Titanium Alloy Using Green Silicon Carbide Wheel
,”
Key Eng. Mater.
,
487
, pp.
121
125
. 10.4028/www.scientific.net/KEM.487.121
35.
Shi
,
Z.
, and
Attia
,
H.
,
2014
, “
High Removal Rate Grinding of Titanium Alloys With Electroplated CBN Wheels
,”
Int. J. Abrasive Technol.
,
6
(
3
), pp.
243
255
. 10.1504/IJAT.2014.060695
36.
Guo
,
G.
,
Liu
,
Z.
, and
An
,
Q.
,
2011
, “
Experimental Investigation on Conventional Grinding of Ti-6Al-4V Using SiC Abrasive
,”
Int. J. Adv. Manuf. Technol.
,
57
(
1
), pp.
135
142
. 10.1007/s00170-011-3272-z
37.
Zhang
,
H.
,
Chen
,
W.
, and
Chen
,
Z.
,
2007
, “
Experimental Studies on Grinding of Titanium Alloy With SG Wheels
,”
Key Eng. Mater.
,
329
, pp.
75
80
. 10.4028/www.scientific.net/KEM.329.75
38.
Kumar
,
K.
,
1990
, “
Superabrasive Grinding of Titanium Alloys
”, SME Technical Paper MR90-505.
39.
Li
,
H.
,
Tian
,
L.
,
Fu
,
Y.
, and
Liu
,
G.
,
2013
, “
Experimental Studies on Forces and Specific Energy in High Speed Grinding of Titanium Alloy Ti6Al4V
,”
Adv. Mater. Res.
,
797
, pp.
112
117
. 10.4028/www.scientific.net/AMR.797.112
40.
Mittal
,
B.
,
Barber
,
G.
, and
Malkin
,
S.
,
1991
, “
Comparison of Buffered Phosphate Solution With Soluble Oils for Grinding of Titanium Alloy
,”
Annual Meeting of the American Society of Mechanical Engineers
,
Atlanta
,
Dec. 1–6
, pp.
15
23
.
41.
Li
,
X.
,
Chen
,
Z.
, and
Chen
,
W.
,
2011
, “
Suppression of Surface Burn in Grinding of Titanium Alloy TC4 Using a Self-Inhaling Internal Cooling Wheel
,”
Chin. J. Aeronaut.
,
24
(
1
), pp.
96
10
. 10.1016/S1000-9361(11)60012-5
42.
Fu
,
Y.
,
Xu
,
H.
, and
Sun
,
F.
,
2006
, “
Experimental Studies on Creep Feed Deep Grinding of Titanium Alloy With Slotted CBN Grinding Wheel
,”
Key Eng. Mater.
,
304
, pp.
166
170
. 10.4028/www.scientific.net/KEM.304-305.166
43.
Teicher
,
U.
,
Ghosh
,
A.
,
Chattopadhyay
,
A.
, and
Kunanz
,
K.
,
2006
, “
On the Grindability of Titanium Alloy by Brazed Type Monolayered Superabrasive Grinding Wheels
,”
Int. J. Mach. Tools Manuf.
,
46
(
6
), pp.
620
622
. 10.1016/j.ijmachtools.2005.07.012
44.
Klocke
,
F.
,
Soo
,
S.
,
Karpuschewski
,
B.
,
Webster
,
J.
,
Novovic
,
D.
,
Elfizy
,
A.
,
Axinte
,
D.
, and
Tönissen
,
S.
,
2015
, “
Abrasive Machining of Advanced Serospace Alloys and Composites
,”
CIRP Ann.
,
64
(
2
), pp.
581
604
. 10.1016/j.cirp.2015.05.004
45.
Caggiano
,
A.
,
2018
, “
Machining of Fibre Reinforced Plastic Composite Materials
,”
Materials
,
11
(
3
), p.
442
. 10.3390/ma11030442
46.
Ilio
,
A.
, and
Paoletti
,
A.
,
2000
, “
A Comparison Between Conventional Abrasives and Superabrasives in Grinding SiC–Aluminium Composites
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
173
184
. 10.1016/S0890-6955(99)00061-9
47.
Zhong
,
Z.
, and
Hung
,
N.
,
2002
, “
Grinding of Alumina/Aluminium Composites
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
13
17
. 10.1016/S0924-0136(02)00075-4
48.
Krishnan
,
R.
, and
Vettivel
,
S.
,
2014
, “
Effect of Parameters on Grinding Forces and Energy While Grinding Al (A356)/SiC Composites
,”
Tribol.-Mater. Surf. Interfaces
,
8
(
4
), pp.
235
240
. 10.1179/1751584X14Y.0000000082
49.
Chockalingam
,
P.
, and
Kuang
,
K.
,
2015
, “
Effects of Abrasive Types on Grinding of Chopped Strand Mat Glass Fiber-Reinforced Polymer Composite Laminates
,”
Mach. Sci. Technol.
,
19
(
2
), pp.
313
324
. 10.1080/10910344.2015.1018534
50.
Soo
,
S.
,
Shyha
,
I.
,
Barneet
,
T.
,
Aspinwall
,
D.
, and
Sim
,
W.
,
2012
, “
Grinding Performance and Workpiece Integrity When Superabrasive Edge Routing Carbon Fibre Reinforced Plastic (CFRP) Composites
,”
CIRP Ann.
,
61
(
1
), pp.
295
298
. 10.1016/j.cirp.2012.03.042
51.
Sultana
,
I.
,
Shi
,
Z.
,
Attia
,
H.
, and
Thomson
,
V.
,
2016
, “
A New Hybrid Oscillatory Orbital Process for Drilling of Composites Using Superabrasive Diamond Tools
,”
CIRP Ann.
,
65
(
1
), pp.
141
144
. 10.1016/j.cirp.2016.04.049
52.
Zelwer
,
O.
, and
Malkin
,
S.
,
1980
, “
Grinding of WC-Co Cemented Carbides—Part I
,”
Ind. Diamond Rev.
,
4
, pp.
133
139
.
53.
Zelwer
,
O.
, and
Malkin
,
S.
,
1980
, “
Grinding of WC-Co Cemented Carbides—Part II
,”
Ind. Diamond Rev.
,
5
, pp.
173
176
.
54.
Ratterman
,
E.
,
1975
, “
An Analysis of the Low Speed Grinding of Tungsten Carbide
,”
The 3rd DWMI Technical Symposium
,
Cleveland, OH
,
Nov.
, pp.
1
8
.
55.
Metzger
,
J. L.
,
1982
, “
The Effect of Grit Size and Carbide Grade in Plunge Grinding
,”
Ind. Diamond Rev.
,
3
, pp.
145
149
.
56.
Metzger
,
J. L.
,
1981
, “
Wheel Wear Versus Workpiece/Wheel Rim Impact in Carbide Grinding
,”
Ind. Diamond Rev.
,
4
, pp.
192
195
.
57.
Juchem
,
H. O.
,
1984
, “
Creep Feed Grinding—A Review
,”
Ind. Diamond Rev.
,
3
, pp.
107
114
.
58.
Andrew
,
C.
, and
Howes
,
T.
,
1985
,
Creep Feed Grinding
,
Industrial Press Inc.
,
New York
.
59.
Bruce
,
B. W.
,
1979
, “
Reduced Grinding Costs With Plated Diamond Wheels
,”
Cutting Tool Eng.
,
31
(
5
), pp.
71
74
.
60.
Curn
,
F.
,
1967
,
Diamond Profiling Wheels for Grinding of Sintered Carbide
,
Industrial Diamond Information Bureau
,
London
, pp.
291
307
.
61.
Shi
,
Z.
,
Elfizy
,
A.
,
Attia
,
H.
, and
Ouellet
,
G.
,
2017
, “
Grinding of Chromium Carbide Coatings Using Electroplated Diamond Wheels
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121014
.
62.
Shi
,
Z.
,
Attia
,
H.
,
Chellan
,
D.
, and
Wang
,
T.
,
2008
, “
Creep-feed Grinding of Tungsten Carbide Using Small Diameter Electroplated Diamond Wheels
,”
Ind. Diamond Rev.
,
4
, pp.
65
69
.
63.
Shi
,
Z.
,
Meshreki
,
M.
,
Lamarre
,
J.
,
Attia
,
H.
, and
Aghasibeig
,
M.
,
2018
, “
An Experimental Study for Lowering Surface Roughness in Grinding With Electroplated Superabrasive Wheels
,”
21st International Symposium on Advances in Abrasive Technology
,
Toronto
,
Oct
.
64.
Tai
,
B. J.
,
Palmisanco
,
A.
,
Belmont
,
B.
,
Irwin
,
T.
,
Shih
,
A. J.
, and
Holmes
,
J.
,
2015
, “
Numerical Evaluation of Sequential Bone Drilling Strategies Based on Thermal Damage
,”
Med. Eng. Phys.
,
37
(
9
), pp.
855
861
. 10.1016/j.medengphy.2015.06.002
65.
Guo
,
C.
, and
Kountanya
,
R.
,
2018
, “
Force and Temperature Modeling in 5-Axis Grinding
,”
Proc. Manuf.
,
26
, pp.
521
529
.
66.
Guo
,
C.
, and
Kountanya
,
R.
,
2017
, “
Specific Material Removal Rate Calculation in 5-Axis Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121010
.
67.
Shi
,
Z.
,
Elfizy
,
A.
, and
Attia
,
H.
,
2015
, “
Deep Profiled Slot Grinding on a Nickel-Based Alloy With Electroplated CBN Wheels
,”
Adv. Mater. Res.
,
1136
, pp.
3
8
. 10.4028/www.scientific.net/AMR.1136.3
68.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H. W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
, and
Uhlmann
,
E.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann.—Manuf. Technol.
,
55
(
2
), pp.
667
696
. 10.1016/j.cirp.2006.10.003
69.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2009
, “
Finite Element Modeling Approaches in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
109
116
. 10.1016/j.ijmachtools.2008.10.002
70.
Rüttimann
,
N.
,
Roethlin
,
M.
,
Buhl
,
S.
, and
Wegener
,
K.
,
2013
, “
Simulation of Hexa-Octahedral Diamond Grain Cutting Tests Using the SPH Method
,”
Proc. CIRP
,
8
, pp.
322
327
. 10.1016/j.procir.2013.06.110
71.
Cao
,
J.
,
Wu
,
Y.
,
Li
,
J.
, and
Zhang
,
Q.
,
2016
, “
Study on the Material Removal Process in Ultrasonic-Assisted Grinding of SiC Ceramics Using Smooth Particle Hydrodynamic (SPH) Method
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
985
994
. 10.1007/s00170-015-7629-6
72.
Duan
,
N.
,
Yu
,
Y.
,
Wang
,
W.
, and
Xu
,
X.
,
2017
, “
SPH and FE Coupled 3D Simulation of Monocrystal SiC Scratching by Single Diamond Grit
,”
Int. J. Refract. Met. Hard Mater.
,
64
, pp.
279
293
. 10.1016/j.ijrmhm.2016.09.016
73.
Duan
,
N.
,
Yu
,
Y.
,
Wang
,
W.
, and
Xu
,
X.
,
2017
, “
Analysis of Grit Interference Mechanisms for the Double Scratching of Monocrystalline Silicon Carbide by Coupling the FEM and SPH
,”
Int. J. Mach. Tools Manuf.
,
120
, pp.
49
60
. 10.1016/j.ijmachtools.2017.04.012
74.
Puthanangady
,
T.
,
2019
,
Advances in Superfinishing
,
Darmann Abrasive Products
,
Clinton, MA
.
75.
Naka
,
S.
,
Aoyama
,
E.
,
Hirogaki
,
T.
,
Onchi
,
Y.
, and
Ogawa
,
K.
,
2007
, “
Superfinishing Using Fine CBN Stone to Achieve Nano-Mirror Surfaces on Hardened Steel
,”
IEEE 2007 International Symposium on Assembly and Manufacturing
,
Ann Arbor, MI
,
July 22–25
, pp.
124
129
.
76.
Ogawa
,
S.
,
Aoyama
,
E.
,
Hirogaki
,
T.
, and
Onchi
,
Y.
,
2008
, “
Nano Surface Generation Using Low Pressure Superfinishing With Fine Diamond Stones
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
6
), pp.
1041
1054
. 10.1299/jamdsm.2.1041
77.
Furushiro
,
N.
,
Higuchi
,
M.
,
Yamaguchi
,
T.
,
Sugimoto
,
T.
,
Matsumori
,
N.
,
Ogura
,
H.
, and
Shimada
,
S.
,
2010
, “
Development of Mechanochemical Diamond Stone Containing BaSO4 Abrasive
,”
Precis. Eng.
,
34
(
3
), pp.
419
424
. 10.1016/j.precisioneng.2009.12.004
78.
Furushiro
,
N.
,
Higuchi
,
M.
,
Yamaguchi
,
T.
,
Yamano
,
T.
,
Matsumori
,
N.
, and
Ogura
,
H.
,
2009
, “
Superfinish Characteristics of Mechanochemical Superabrasive Stone Containing CeO2 Abrasive
,”
J. Jpn. Soc. Abrasive Technol.
,
53
(
8
), pp.
499
503
.
79.
Puthanangady
,
T.
, and
Malkin
,
S.
,
1995
, “
Experimental Investigation of the Superfinishing Process
,”
Wear
,
185
(
1–2
), pp.
173
182
. 10.1016/0043-1648(95)06606-3
80.
Higashi
,
K.
,
Isa
,
H.
,
Kitagawa
,
T.
,
Onishi
,
T.
, and
Ohashi
,
K.
,
2014
, “
Real Time Monitoring of Superfinishing Process
,” NTN Technical Review No. 82.
81.
Goldau
,
H.
, and
Stozle
,
R.
,
2016
, “
Method for Finishing Workpiece Surfaces
,” Patent DE102014018541A.
82.
Hembrug Machine Tools
,
2019
, “
Stone Superfinish on Turning Machines
.”
83.
Mikolajczyk
,
T.
,
Fas
,
T.
,
Klodowski
,
A.
,
Matuszewski
,
M.
,
Olaru
,
A.
, and
Olaru
,
S.
,
2016
, “
Computer Aided System for Superfinishing Process Control
,”
Proc. Technol.
,
22
, pp.
48
54
. 10.1016/j.protcy.2016.01.008
84.
Chang
,
S. H.
,
Balasubrahanya
,
S.
,
Chandrasekar
,
S.
,
Farris
,
T. N.
, and
Hashimoto
,
F.
,
1997
, “
Forces and Specific Energy in Superfinishing of Hardened Steel
,”
Ann. CIRP
,
46
(
1
), pp.
257
260
. 10.1016/S0007-8506(07)60820-8
85.
Chaudhari
,
R.
, and
Malkin
,
S.
,
1995
, “
Experimental Investigation of Reduced Stroke Superfinishing Using Ultrasonic Vibrations
,”
1st International Machining and Grinding Conference
,
Dearborn, MI
,
Sept. 12–14
, pp.
827
844
.
86.
Timken Internal Report, Waviness Attenuation During Superfinishing.
87.
Thielenhaus Tehchnologies
,
2016
, “
HyperFinish-Revolutionizing the Superfinishing Process
,” https://www.thielenhaus.com/images/brochures/hyperfinish/HyperFinish-en_Ansicht.pdf. Accessed Mar. 8, 2016.
88.
Hashimoto
,
F.
,
1996
, “
Modelling and Optimization of Vibratory Finishing Process
,”
Ann. CIRP
,
45
(
1
), pp.
303
306
. 10.1016/S0007-8506(07)63068-6
89.
Wang
,
S.
,
Timsit
,
R. S.
, and
Spelt
,
J. K.
,
2000
, “
Experimental Investigation of Vibratory Finishing of Aluminum
,”
Wear
,
243
(
1–2
), pp.
147
156
. 10.1016/S0043-1648(00)00437-3
90.
Yabuki
,
A.
,
Baghbanan
,
M. R.
, and
Spelt
,
J. K.
,
2002
, “
Contact Forces and Mechanisms in a Vibratory Finisher
,”
Wear
,
252
(
7–8
), pp.
635
643
. 10.1016/S0043-1648(02)00016-9
91.
Domblesky
,
J.
,
Evans
,
R.
, and
Cariapa
,
V.
,
2004
, “
Material Removal Model for Vibratory Finishing
,”
Int. J. Prod. Res.
,
42
(
5
), pp.
1029
1041
. 10.1080/00207540310001619641
92.
Naeini
,
S. E.
, and
Spelt
,
J. K.
,
2009
, “
Two Dimensional Discrete Element Modeling of Spherical Steel Media in a Vibrating Bed
,”
Powder Technol.
,
195
(
2
), pp.
83
90
. 10.1016/j.powtec.2009.05.016
93.
Uhlmann
,
E.
,
Eulitz
,
A.
, and
Dethlefs
,
A.
,
2015
, “
Discrete Element Modeling of Drag Finishing
,”
Proc. CIRP
,
31
, pp.
369
374
. 10.1016/j.procir.2015.03.021
94.
Cariapa
,
V.
,
Park
,
H.
,
Kim
,
J.
,
Cheng
,
C.
, and
Evaristo
,
A.
,
2008
, “
Development of a Metal Removal Model Using Spherical Ceramic Media in a Centrifugal Disk Mass Finishing Machine
,”
Int. J. Adv. Manuf. Technol.
,
39
(
1–2
), pp.
92
106
. 10.1007/s00170-007-1195-5
95.
Mullany
,
B.
,
Shahinian
,
H.
,
Navare
,
J.
,
Azimi
,
F.
,
Fleischhauer
,
E.
,
Tkacik
,
P.
, and
Keanini
,
R.
,
2017
, “
The Application of Computational Fluid Dynamics to Vibratory Finishing Processes
,”
Ann. CIRP
,
66
(
1
), pp.
309
312
. 10.1016/j.cirp.2017.04.087
96.
Hashimoto
,
F.
,
Johnson
,
S. P.
, and
Chaudhari
,
R. G.
,
2016
, “
Modeling of Material Removal Mechanism in Vibratory Finishing Process
,”
CIRP Ann.
,
65
(
1
), pp.
325
328
. 10.1016/j.cirp.2016.04.011
97.
Hashimoto
,
F.
, and
Johnson
,
S. P.
,
2015
, “
Modeling of Vibratory Finishing Machines
,”
CIRP Ann.—Manuf. Technol.
,
64
(
1
), pp.
345
348
. 10.1016/j.cirp.2015.04.004
98.
Zhou
,
R. S.
, and
Hashimoto
,
F.
,
1995
, “
A New Rolling Contact Surface and No Run Performance Bearings
,”
ASME J. Tribol.
,
117
(
1
), pp.
166
170
. 10.1115/1.2830594
99.
Winkelmann
,
L.
, and
El Saeed
,
O.
,
2007
, “
The Capacity of Superfinished Vehicle Components to Increase Fuel Economy
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
733
746
.
100.
Hashimoto
,
F.
,
Yamaguchi
,
H.
,
Krajnik
,
P.
,
Wegener
,
K.
,
Chaudhari
,
R.
,
Hoffmeister
,
H.-W.
, and
Kuster
,
F.
,
2016
, “
Abrasive Fine-Finishing Technology
,”
CIRP Ann.
,
65
(
2
), pp.
597
620
. 10.1016/j.cirp.2016.06.003
101.
Lachenmaier
,
M.
,
Ohlert
,
M.
,
Trauth
,
D.
, and
Bergs
,
T.
,
2019
, “
Analysis of the Acceleration Transfer in the Unguided Vibratory Finishing Process
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 2: Processes; Materials
,
Erie, PA
,
June 10–14
, ASME, p. V002T03A024.https://doi.org/10.1115/MSEC2019-2719.
102.
Ciampini
,
D.
,
Papini
,
M.
, and
Spelt
,
J. K.
,
2007
, “
Impact Velocity Measurement of Media in a Vibratory Finisher
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
347
357
. 10.1016/j.jmatprotec.2006.10.024
103.
Hasemnia
,
K.
,
Mohajerani
,
A.
, and
Spelt
,
J. K.
,
2013
, “
Development of a Laser Displacement Probe to Measure Particle Impact Velocities in Vibrationally Fluidized Granular Flows
,”
Powder Technol.
,
235
, pp.
940
952
. 10.1016/j.powtec.2012.12.001
104.
Kang
,
Y. S.
,
Hashimoto
,
F.
,
Johnson
,
S. P.
, and
Rhodes
,
J. P.
,
2017
, “
Discrete Element Modeling of 3D Media Motion in Vibrator Finishing Process
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
313
316
. 10.1016/j.cirp.2017.04.092
105.
Naeini
,
S. E.
, and
Spelt
,
J. K.
,
2011
, “
Development of Single-Cell Bulk Circulation in Granular Media in a Vibrating Bed
,”
Powder Technol.
,
211
(
1
), pp.
176
186
. 10.1016/j.powtec.2011.04.018
106.
Yamaguchi
,
H.
,
Shinmura
,
T.
, and
Ikeda
,
R.
,
2007
, “
Study of Internal Finishing of Austenitic Stainless Steel Capillary Tubes by Magnetic Abrasive Finishing
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
885
893
. 10.1115/1.2738957
107.
Gridasova
,
T. Y.
,
Zhornyak
,
A. F.
,
Karpova
,
L. A.
,
Karyuk
,
G. G.
,
Oliker
,
V. E.
, and
Shlyuko
,
V. Y.
,
1980
, “
Magnetoabrasive Materials From Melts
,”
Powder Metall. Met. Ceram.
,
19
(
7
), pp.
505
507
.
108.
Baron
,
Y. M.
,
2008
,
Finishing, Improvement of Wearing and Hardening Using Magnetic Field, Create Space Independent Publishing Platform
,
Saint-Petersburg
.
109.
Kurobe
,
T.
,
Imanaka
,
O.
, and
Tachibana
,
S.
,
1983
, “
Magnetic Field-Assisted Fine Finishing
,”
Bull. Jpn. Soc. Precis. Eng.
,
17
(
1
), pp.
49
50
.
110.
Tani
,
Y.
,
Kawata
,
K.
, and
Nakayama
,
K.
,
1984
, “
Development of High-Efficient Fine Finishing Process Using Magnetic Fluid
,”
CIRP Ann.
,
33
(
1
), pp.
217
220
. 10.1016/S0007-8506(07)61412-7
111.
Umehara
,
N.
, and
Kato
,
K.
,
1990
, “
Principles of Magnetic Fluid Grinding of Ceramic Balls
,”
Int. J. Appl. Electromagn. Mater.
,
1
, pp.
37
43
.
112.
Fox
,
M.
,
Agrawal
,
K.
,
Shinmura
,
T.
, and
Komanduri
,
R.
,
1994
, “
Magnetic Abrasive Finishing of Rollers
,”
CIRP Ann.
,
43
(
1
), pp.
181
184
. 10.1016/S0007-8506(07)62191-X
113.
Komanduri
,
R.
,
Umehara
,
N.
, and
Raghunandan
,
M.
,
1996
, “
On the Possibility of Chemo-Mechanical Polishing of Silicon Nitride
,”
ASME J. Tribol.
,
118
(
4
), pp.
721
727
. 10.1115/1.2831600
114.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
1998
, “
Magnetic Field Assisted Finishing of Ceramics—Part I: Thermal Model
,”
ASME J. Tribol.
,
120
(
4
), pp.
645
651
. 10.1115/1.2833761
115.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
1998
, “
Magnetic Field Assisted Finishing of Ceramics—Part II: On the Thermal Aspects of Magnetic Float Polishing (MFP) of Ceramic Balls
,”
ASME J. Tribol.
,
120
(
4
), pp.
652
659
. 10.1115/1.2833762
116.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
1998
, “
Magnetic Field Assisted Finishing of Ceramics—Part III: On the Thermal Aspects of Magnetic Abrasive Finishing (MAF) of Ceramic Rollers
,”
ASME J. Tribol.
,
120
(
4
), pp.
660
667
. 10.1115/1.2833763
117.
Suga
,
T.
,
Suzuki
,
S.
, and
Miyazawa
,
K.
,
1989
, “
Mechanochemical Polishing of Sintered Silicon Nitride
,”
J. JSPE
,
55
(
12
), pp.
2247
2253
(in Japanese).
118.
Harris
,
D. C.
,
2011
, “
History of Magnetorheological Finishing
,”
Proceedings of SPIE 8016
, 80160N.
119.
Kordonski
,
W.
, and
Gorodkin
,
S.
,
2011
, “
Material Removal in Magnetorheological Finishing of Optics
,”
Appl. Opt.
,
50
(
14
), pp.
1984
1994
. 10.1364/AO.50.001984
120.
Yamaguchi
,
H.
,
Li
,
M.
, and
Hanada
,
K.
,
2019
, “
Surface Finishing of Biodegradable Stents
,”
CIRP Ann.
,
68
(
1
), pp.
357
360
. 10.1016/j.cirp.2019.04.008
121.
El-Amri
,
I.
,
Iquebal
,
A. S.
,
Srinivasa
,
A.
, and
Bukkapatnam
,
S.
,
2018
, “
Localized Magnetic Fluid Finishing of Freeform Surfaces Using Electropermanent Magnets and Magnetic Concentration
,”
J. Manuf. Processes
,
34
(
B
), pp.
802
808
. 10.1016/j.jmapro.2018.05.026
122.
Ross
,
D.
, and
Yamaguchi
,
H.
,
2018
, “
Nanometer-scale Characteristics of Polycrystalline YAG Ceramic Polishing
,”
CIRP Ann.
,
67
(
1
), pp.
349
352
. 10.1016/j.cirp.2018.04.090
123.
Yamaguchi
,
H.
, and
Graziano
,
A.
,
2014
, “
Surface Finishing of Cobalt Chromium Alloy Femoral Knee Components
,”
CIRP Ann.
,
63
(
1
), pp.
309
312
. 10.1016/j.cirp.2014.03.020
124.
Yamaguchi
,
H.
,
Fergani
,
O.
, and
Wu
,
P.-Y.
,
2017
, “
Modification Using Magnetic Field-Assisted Finishing of the Surface Roughness and Residual Stress of Additively Manufactured Components
,”
CIRP Ann.
,
66
(
1
), pp.
305
308
. 10.1016/j.cirp.2017.04.084
125.
Wantuch
,
E. T.
,
2000
,
Podstawy Technologii Magnetościernej
,
Wydawnictwa Naykowo-Technicze
,
Warszawa
(in Polish).
126.
Jain
,
V. K.
,
2009
, “
Magnetic Field Assisted Abrasive Based Micro-/Nano-Finishing
,”
J. Mater. Process. Technol.
,
209
(
20
), pp.
6022
6038
. 10.1016/j.jmatprotec.2009.08.015
127.
Jha
,
S.
, and
Jain
,
V. K.
,
2004
, “
Design and Development of Magnetorheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1019
1029
. 10.1016/j.ijmachtools.2004.03.007
128.
Yan
,
B.-H.
,
Chang
,
G.-W.
,
Cheng
,
T.-J.
, and
Hsu
,
R.-T.
,
2003
, “
Electrolytic Magnetic Abrasive Finishing
,”
Int. J. Mach. Tools Manuf.
,
43
(
13
), pp.
1355
1366
. 10.1016/S0890-6955(03)00151-2
129.
El-Taweel
,
T. A.
,
2008
, “
Modelling and Analysis of Hybrid Electrochemical Turning Magnetic Abrasive Finishing of 6061 Al/Al2O3 Composite
,”
Int. J. Adv. Manuf. Technol.
,
37
(
7–8
), pp.
705
714
. 10.1007/s00170-007-1019-7
130.
Mulik
,
R. S.
, and
Pandey
,
P. M.
,
2011
, “
Ultrasonic Assisted Magnetic Abrasive Finishing of Hardened AISI 52100 Steel Using Unbonded SiC Abrasives
,”
Int. J. Refract. Met. Hard Mater.
,
29
(
1
), pp.
68
77
. 10.1016/j.ijrmhm.2010.08.002
131.
Murata
,
J.
,
Ueno
,
Y.
,
Yodogawa
,
K.
, and
Sugiura
,
T.
,
2016
, “
Polymer/CeO2–Fe3O4 Multicomponent Core–Shell Particles for High-Efficiency Magnetic-Field-Assisted Polishing Processes
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
28
34
. 10.1016/j.ijmachtools.2015.11.004
132.
Kovaliova
,
S.
,
Šepelák
,
V.
,
Grigoreva
,
T.
,
Zhornik
,
V.
,
Kiseleva
,
T.
,
Khomich
,
M.
,
Devyatkina
,
E.
,
Vosmerikov
,
S.
,
Vityaz
,
P.
, and
Lyakhov
,
N.
,
2018
, “
Mechanosynthesis of Composites in Chemically Non-Reacting and Exothermically Reacting Systems for Magnetic Abrasive Mmedia
,”
J. Mater. Sci.
,
53
(
19
), pp.
13560
13572
. 10.1007/s10853-018-2463-5
133.
Sooraj
,
V. S.
,
2017
, “
Concept and Mechanics of Fine Finishing Circular Internal Surfaces Using Deployable Magneto-Elastic Abrasive Tool
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081001
. 10.1115/1.4036289
134.
Nagdeve
,
L.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2019
, “
Preliminary Investigations Into Nano-Finishing of Freeform Surface (Femoral) Using Inverse Replica Fixture
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1081
1092
. 10.1007/s00170-017-1459-7
135.
Pandey
,
N.
,
Singh
,
R.
,
Pant
,
P.
, and
Yadav
,
A.
,
2018
, “
Development of Mathematical Model for Material Removal and Surface Roughness in Electrolytic Magnetic Abrasive Finishing Process
,”
IOP Conf. Series: Materials Science and Engineering
,
404
, p.
012053
.
136.
Misra
,
A.
,
Pandey
,
P. M.
,
Dixit
,
U. S.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2018
, “
Multi-Objective Optimization of Ultrasonic-Assisted Magnetic Abrasive Finishing Process
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1661
1670
.
137.
Pandey
,
K.
, and
Pandey
,
P. M.
,
2019
, “
An Integrated Application of Chemo-Ultrasonic Approach for Improving Surface Finish of Si (100) Using Double Disk Magnetic Abrasive Finishing
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
3871
3886
. 10.1007/s00170-019-03829-5
138.
Wang
,
C.
,
Cheung
,
C. F.
,
Ho
,
L. T.
,
Yung
,
K. L.
, and
Kong
,
L.
,
2020
, “
A Novel Magnetic Field-Assisted Mass Polishing of Freeform Surfaces
,”
J. Mater. Process. Technol.
,
279
, p.
116552
. 10.1016/j.jmatprotec.2019.116552
139.
Guo
,
J.
,
Au
,
K.
, and
Sun
,
C.
,
2019
, “
Novel Rotating-Vibrating Magnetic Abrasive Polishing Method for Double-Layered Internal Surface Finishing
,”
J. Mater. Process. Technol.
,
264
, pp.
422
437
. 10.1016/j.jmatprotec.2018.09.024
140.
Mosavat
,
M.
, and
Rahimi
,
A.
,
2019
, “
Numerical-Experimental Study on Polishing of Silicon Wafer Using Magnetic Abrasive Finishing Process
,”
Wear
,
424–425
, pp.
143
150
. 10.1016/j.wear.2019.02.007
141.
Kum
,
C. W.
,
Sato
,
T.
,
Guo
,
J.
,
Liu
,
K.
, and
Butler
,
D.
,
2018
, “
A Novel Media Properties-Based Material Removal Rate Model for Magnetic Field-Assisted Finishing
,”
Int. J. Mech. Sci.
,
141
, pp.
189
197
. 10.1016/j.ijmecsci.2018.04.006
142.
Aspden
,
R.
,
McDonough
,
R.
, and
Nitchie
,
F. R.
,
1972
, “
Computer Assisted Optical Surfacing
,”
Appl. Opt.
,
11
(
12
), pp.
2739
2747
. 10.1364/AO.11.002739
143.
Jones
,
R. A.
,
1977
, “
Optimization of Computer Controlled Polishing
,”
Appl. Opt.
,
16
(
1
), pp.
218
224
. 10.1364/AO.16.000218
144.
Jones
,
R. A.
,
1979
, “
Grinding and Polishing With Small Tools Under Computer Control
,”
Los Angeles Technical Symposium.
145.
Harris
,
D. C.
,
2011
, “
History of Magnetorheological Finishing
,”
SPIE Defense, Security, and Sensing.
146.
Kordonsky
,
W. I.
,
Prokhorov
,
I. V.
,
Gorodkin
,
S. R.
,
Gorodkin
,
G. R.
,
Gleb
,
L. K.
, and
Kashevsky
,
B. E.
,
1995
, “
Magnetorheological polishing devices and methods
,” U.S. Patent 5,449,313.
147.
Jacobs
,
S. D.
,
Golini
,
D.
,
Hsu
,
Y.
,
Puchebner
,
B. E.
,
Strafford
,
D.
,
Prokhorov
,
I. V.
,
Fess
,
E. M.
,
Pietrowski
,
D.
, and
Kordonski
,
W. I.
,
1995
, “
Magnetorheological Finishing: a Deterministic Process for Optics Manufacturing
,”
International Conferences on Optical Fabrication and Testing and Applications of Optical Holography.
148.
Golini
,
D.
,
Kordonski
,
W. I.
,
Dumas
,
P.
, and
Hogan
,
S. J.
,
1999
, “
Magnetorheological Finishing (MRF) in Commercial Precision Optics Manufacturing
,”
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation.
149.
Walker
,
D. D.
,
Beaucamp
,
A.
,
Brooks
,
D.
,
Freeman
,
R.
,
King
,
A.
,
McCavana
,
G.
,
Morton
,
R.
,
Riley
,
D.
, and
Simms
,
J.
,
2002
, “
Novel CNC Polishing Process for Control of Form and Texture on Aspheric Surfaces
,”
International Symposium on Optical Science and Technology.
150.
Walker
,
D.
,
Brooks
,
D.
,
King
,
A.
,
Freeman
,
R.
,
Morton
,
R.
,
McCavana
,
G.
, and
Kim
,
S. W.
,
2003
, “
The Precessions Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces
,”
Opt. Express
,
11
(
8
), pp.
958
964
. 10.1364/OE.11.000958
151.
Walker
,
D. D.
,
Beaucamp
,
A. T.
,
Brooks
,
D.
,
Doubrovski
,
V.
,
Cassie
,
M. D.
,
Dunn
,
C.
,
Freeman
,
R. R.
,
King
,
A.
,
Libert
,
M.
, and
McCavana
,
G.
,
2004
, “
New Results From the Precessions Polishing Process Scaled to Larger Sizes
,”
SPIE Astronomical Telescopes+ Instrumentation.
152.
Bambrick
,
S.
,
Bechtold
,
M.
,
DeFisher
,
S.
,
Mohring
,
D.
, and
Meisenzahl
,
J.
,
2008
, “
Finishing of Deep Concave, Aspheric, and Plano Surfaces Utilizing the UltraForm 5-Axis Computer Controlled System
,”
Optical Fabrication and Testing of Optical Society of America.
153.
Bambrick
,
S.
,
Bechtold
,
M.
,
DeFisher
,
S.
,
Mohring
,
D.
, and
Meisenzahl
,
J.
,
2009
, “
Recent Developments in Finishing of Deep Concave, Aspheric, and Plano Surfaces Utilizing the Ultraform 5-Axes Computer Controlled System
,”
SPIE Defense, Security, and Sensing
,
7302
.
154.
Fähnle
,
O. W.
, and
van Brug
,
H. H.
,
1999
, “
Fluid Jet Polishing: Removal Process Analysis,” Optical Fabrication and Testing
,
Proc. SPIE
,
3739
, pp.
68
77
. https://doi.org/10.1117/12.360189
155.
Fang
,
F.
,
Zhang
,
X.
,
Weckenmann
,
A.
,
Zhang
,
G.
, and
Evans
,
C.
,
2013
, “
Manufacturing and Measurement of Freeform Optics
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
823
846
. 10.1016/j.cirp.2013.05.003
156.
Dunn
,
C. R.
, and
Walker
,
D. D.
,
2008
, “
Pseudo-random Tool Paths for CNC Sub-Aperture Polishing and Other Applications
,”
Opt. Express
,
16
(
23
), pp.
18942
18949
. 10.1364/OE.16.018942
157.
Wang
,
C.
,
Wang
,
Z.
, and
Xu
,
Q.
,
2015
, “
Unicursal Random Maze Tool Path for Computercontrolled Optical Surfacing
,”
Appl. Opt.
,
54
(
34
), pp.
10128
10136
. 10.1364/AO.54.010128
158.
Shahinian
,
H.
, and
Mullany
,
B.
,
2019
, “
Polishing Spherical BK7 Workpieces With Fiber-Based Tools
,”
Opt. Eng.
,
58
(
9
), p.
092610
.
159.
Shahinian
,
H.
,
Hassan
,
M.
,
Cherukuri
,
H.
, and
Mullany
,
B.
,
2017
, “
Fiber-based Tools: Material Removal and Mid-spatial Frequency Error Reduction
,”
Appl. Opt.
,
56
(
29
), pp.
8622
8674
. 10.1364/AO.56.008266
160.
Gillespie
,
L.
,
2006
,
Mass Finishing Handbook
,
SME Industrial Press (IP)
,
New York
.
161.
Zanger
,
F.
,
Kacaras
,
A.
,
Neuenfeldt
,
P.
, and
Schulze
,
V.
,
2019
, “
Optimization of the Stream Finishing Process for Mechanical Surface Treatment by Numerical and Experimental Process Analysis
,”
CIRP Ann.—Manuf. Technol.
,
68
(
1
), pp.
373
376
. 10.1016/j.cirp.2019.04.086
162.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
. 10.1115/1.4024040
163.
Aurich
,
J. C.
,
Carrella
,
M.
, and
Steffes
,
M.
,
2012
, “Evaluation of Abrasive Processes and Machines With Respect to Energy Efficiency,”
Leveraging Technology for a Sustainable World
,
D. A.
Dornfeld
, and
B. S.
Linke
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
329
333
.
164.
Helu
,
M.
,
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2011
, “
Evaluating the Relationship Between Use Phase Environmental Impacts and Manufacturing Process Precision
,”
CIRP Ann.—Manuf. Technol.
,
60
(
1
), pp.
49
52
. 10.1016/j.cirp.2011.03.020
165.
Aurich
,
J. C.
,
Linke
,
B.
,
Hauschild
,
M.
,
Carrella
,
M.
, and
Kirsch
,
B.
,
2013
, “
Sustainability of Abrasive Processes
,”
CIRP Ann.—Manuf. Technol.
,
62
(
2
), pp.
653
672
. 10.1016/j.cirp.2013.05.010
166.
ISO
,
2006
,
ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework
,
International Organization for Standardization
,
Geneva, Switzerland
.
167.
Murray
,
V. R.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2012
, “
Life Cycle Analysis of Grinding: A Case Study of Non-Cylindrical Computer Numerical Control Grinding via a Unit-Process Life Cycle Inventory Approach
,”
Proc. Inst. Mech. Eng. B
,
226
(
10
), pp.
1604
1611
. 10.1177/0954405412454102
168.
Silva
,
D. A. L.
,
Filleti
,
R. A. P.
,
Christoforo
,
A. L.
,
Silva
,
E. J.
, and
Ometto
,
A. R.
,
2015
, “
Application of Life Cycle Assessment (LCA) and Design of Experiments (DOE) to the Monitoring and Control of a Grinding Process
,”
Proc. CIRP
,
29
, pp.
508
513
. 10.1016/j.procir.2015.01.037
169.
Linke
,
B.
, and
Overcash
,
M.
,
2017
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Grinding
,”
Prod. Eng.
,
11
(
6
), pp.
643
653
. 10.1007/s11740-017-0768-x
170.
ASTM
,
2016
,
E3012-16—Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes
,
ASTM International
,
West Conshohocken, PA
.
171.
Brundage
,
M. P.
,
Lechevalier
,
D.
, and
Morris
,
K. C.
,
2018
, “
Toward Standards-Based Generation of Reusable Life Cycle Inventory Data Models for Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021017
. 10.1115/1.4041947
172.
Haapala
,
K. R.
,
2018
, “
2018 RAMP Workshop (Reusable Abstractions of Manufacturing Processes)
,” http://research.engr.oregonstate.edu/isl/feature-story/2018-ramp-workshop-reusable-abstractions-manufacturing-processes
173.
Das
,
J.
,
Bales
,
G. L.
,
Kong
,
Z.
, and
Linke
,
B.
,
2018
, “
Integrating Operator Information for Manual Grinding and Characterization of Process Performance Based on Operator Profile
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081011
. 10.1115/1.4040266
174.
Li
,
W.
,
Winter
,
M.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2012
, “
Eco-Efficiency of Manufacturing Processes: A Grinding Case
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
59
62
. 10.1016/j.cirp.2012.03.029
175.
WBCSD
,
2000
,
Ecoefficiency: Creating More Value With Less Impact
,
World Business Council for Sustainable Development
,
Geneva, Switzerland
.
176.
de Araujo
,
J. B.
, and
de Oliveira
,
J. F. G.
,
2012
, “Evaluation of Two Competing Machining Processes Based on Sustainability Indicators,”
Leveraging Technology for a Sustainable World
,
D. A.
Dornfeld
, and
B. S.
Linke
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
317
322
.
177.
Winter
,
M.
,
Li
,
W.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2014
, “
Stepwise Approach to Reduce the Costs and Environmental Impacts of Grinding Processes
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5
), pp.
919
931
. 10.1007/s00170-013-5524-6
178.
Linke
,
B. S.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
J. Manuf. Sci. Eng. Trans. ASME
,
137
(
6
), p.
060801
. 10.1115/1.4029399
179.
Linke
,
B. S.
,
2016
,
Life Cycle and Sustainability of Abrasive Tools
, RWTH edition,
Springer International Publishing
.
180.
Lu
,
Q.
,
Zhou
,
G.-H.
,
Zhao
,
F.
,
Li
,
L.
, and
Ren
,
Y.-P.
,
2018
, “
Determination of Shape and Distribution of Abrasive Grains to Reduce Carbon Emissions of Honing Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021008
. 10.1115/1.4041481
181.
Winter
,
M.
,
Ibbotson
,
S.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2015
, “
Life Cycle Assessment of Cubic Boron Nitride Grinding Wheels
,”
J. Cleaner Prod.
,
107
, pp.
707
721
. 10.1016/j.jclepro.2015.05.088
182.
Souza
,
A. M.
, and
da Silva
,
E. J.
,
2019
, “
Global Strategy of Grinding Wheel Performance Evaluation Applied to Grinding of Superalloys
,”
Precis. Eng.
,
57
, pp.
113
126
. 10.1016/j.precisioneng.2019.03.013
183.
Kirsch
,
B.
,
Effgen
,
C.
,
Büchel
,
M.
, and
Aurich
,
J. C.
,
2014
, “
Comparison of the Embodied Energy of a Grinding Wheel and an End Mill
,”
Proc. CIRP
,
15
, pp.
74
79
. 10.1016/j.procir.2014.06.037
184.
Uhlmann
,
E.
,
Schröer
,
N.
,
Muthulingam
,
A.
, and
Gülzow
,
B.
,
2019
, “
Increasing the Productivity and Quality of Flute Grinding Processes Through the Use of Layered Grinding Wheels
,”
Proc. Manuf.
,
33
, pp.
754
761
. 10.1016/j.promfg.2019.04.095
185.
Dogra
,
M.
,
Sharma
,
V. S.
,
Dureja
,
J. S.
, and
Gill
,
S. S.
,
2018
, “
Environment-Friendly Technological Advancements to Enhance the Sustainability in Surface Grinding- A Review
,”
J. Cleaner Prod.
,
197
(Part 1), pp.
218
231
. 10.1016/j.jclepro.2018.05.280
186.
Li
,
H. N.
, and
Axinte
,
D.
,
2016
, “
Textured Grinding Wheels: A Review
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
8
35
. 10.1016/j.ijmachtools.2016.07.001
187.
Kannan
,
K.
, and
Arunachalam
,
N.
,
2018
, “
A Digital Twin for Grinding Wheel: An Information Sharing Platform for Sustainable Grinding Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021015
. 10.1115/1.4042076
188.
Sutherland
,
J. W.
,
Dornfeld
,
D. A.
, and
Linke
,
B. S.
,
2018
,
Energy Efficient Manufacturing: Theory and Applications
,
Scrivener Publishing LLC
,
Beverly, MA
.
189.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2004
, “
An Environmental Analysis of Machining
,”
Proceedings of 2004 ASME International Mechanical Engineering Congress and RD&D Expo
,
Anaheim, CA
,
Nov. 13–19
.
190.
Hacksteiner
,
M.
,
Peherstorfer
,
H.
, and
Bleicher
,
F.
,
2018
, “
Energy Efficiency of State-of-the-Art Grinding Processes
,”
Proc. Manuf.
,
21
, pp.
717
724
. 10.1016/j.promfg.2018.02.176
191.
Winter
,
M.
,
2016
,
Eco-Efficiency of Grinding Processes and Systems
,
Springer International Publishing
,
Switzerland
.
192.
Velchev
,
S.
,
Kolev
,
I.
,
Ivanov
,
K.
, and
Gechevski
,
S.
,
2014
, “
Empirical Models for Specific Energy Consumption and Optimization of Cutting Parameters for Minimizing Energy Consumption During Turning
,”
J. Cleaner Prod.
,
80
, pp.
139
149
. 10.1016/j.jclepro.2014.05.099
193.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use,”
Globalized Solutions for Sustainability in Manufacturing
,
J.
Hesselbach
, and
C.
Herrmann
, ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
263
267
.
194.
Ding
,
H.
,
Guo
,
D.
,
Cheng
,
K.
, and
Cui
,
Q.
,
2014
, “
An Investigation on Quantitative Analysis of Energy Consumption and Carbon Footprint in the Grinding Process
,”
Proc. Inst. Mech. Eng. B
,
228
(
6
), pp.
950
956
. 10.1177/0954405413508280
195.
Rowe
,
W. B.
,
2009
,
Principles of Modern Grinding Technology
,
William Andrew
,
Oxford, UK
.
196.
Tönshoff
,
H. K.
, and
Denkena
,
B.
,
2013
, “
Forces and Powers in Cutting and Abrasive Processes
,” Basics of Cutting and Abrasive Processes, Lecture Notes in Production Engineering, Springer, Berlin, Heidelberg.
197.
Brinksmeier
,
E.
,
Meyer
,
D.
,
Huesmann-Cordes
,
A. G.
, and
Herrmann
,
C.
,
2015
, “
Metalworking Fluids—Mechanisms and Performance
,”
CIRP Ann.
,
64
(
2
), pp.
605
628
. 10.1016/j.cirp.2015.05.003
198.
Eckebrecht
,
J.
,
2000
, “
Umweltverträgliche Gestaltung von Spanenden Fertigungsprozessen-Forschungsansätze Und Wissenstransfer
,” Dissertation thesis, University of Bremen.
199.
Najiha
,
M. S.
,
Rahman
,
M. M.
, and
Yusoff
,
A. R.
,
2016
, “
Environmental Impacts and Hazards Associated with Metal Working Fluids and Recent Advances in the Sustainable Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1008
1031
. 10.1016/j.rser.2016.01.065
200.
de Sampaio Alves
,
L. O. B.
,
de Souza Ruzzi
,
R.
,
da Silva
,
R. B.
,
Jackson
,
M. J.
,
Tarrento
,
G. E.
,
de Mello
,
H. J.
,
de Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2017
, “
Performance Evaluation of the Minimum Quantity of Lubricant Technique With Auxiliary Cleaning of the Grinding Wheel in Cylindrical Grinding of N2711 Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121018
.
201.
Walker
,
T.
,
2015
, “
The MQL Handbook A Guide to Machining With Minimum Quantity Lubrication
,” Unist, Inc.
202.
Bhuyan
,
M.
,
Sarmah
,
A.
,
Gajrani
,
K. K.
,
Pandey
,
A.
,
Thulkar
,
T. G.
, and
Sankar
,
M. R.
,
2018
, “
State of Art on Minimum Quantity Lubrication in Grinding Process
,”
Mater. Today: Proc.
,
5
(
9, Part 3
), pp.
19638
19647
. 10.1016/j.matpr.2018.06.326
203.
Guerrini
,
G.
,
Lutey
,
A. H. A.
,
Melkote
,
S. N.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Dry Generating Gear Grinding: Hierarchical Two-Step Finite Element Model for Process Optimization
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061005
. 10.1115/1.4043309
204.
Cearsolo
,
X.
,
Cabanes
,
I.
,
Sánchez
,
J. A.
,
Pombo
,
I.
, and
Portillo
,
E.
,
2016
, “
Dry-Dressing for Ecological Grinding
,”
J. Cleaner Prod.
,
135
, pp.
633
643
. 10.1016/j.jclepro.2016.06.117
205.
Sinha
,
M. K.
,
Madarkar
,
R.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
Application of Eco-Friendly Nanofluids During Grinding of Inconel 718 Through Small Quantity Lubrication
,”
J. Cleaner Prod.
,
141
, pp.
1359
1375
. 10.1016/j.jclepro.2016.09.212
206.
Lee
,
P.-H.
,
Woo Kim
,
J.
, and
Lee
,
S. W.
,
2018
, “
Experimental Characterization on Eco-Friendly Micro-Grinding Process of Titanium Alloy Using Air Flow Assisted Electrospray Lubrication With Nanofluid
,”
J. Cleaner Prod.
,
201
, pp.
452
462
. 10.1016/j.jclepro.2018.07.307
207.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavech
,
F.
,
Putz
,
M.
,
Rech
,
J.
,
Schulze
,
V.
, and
Umbrello
,
D.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
. 10.1016/j.cirp.2016.06.007
208.
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2006
, “
Environmentally Conscious Machining and Grinding With Cryogenic Cooling
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
87
131
. 10.1080/10910340500534316
209.
Zhang
,
J.
,
Li
,
C.
,
Zhang
,
Y.
,
Yang
,
M.
,
Jia
,
D.
,
Liu
,
G.
,
Hou
,
Y.
,
Li
,
R.
,
Zhang
,
N.
,
Wu
,
Q.
, and
Cao
,
H.
,
2018
, “
Experimental Assessment of an Environmentally Friendly Grinding Process Using Nanofluid Minimum Quantity Lubrication With Cryogenic Air
,”
J. Cleaner Prod.
,
193
, pp.
236
248
. 10.1016/j.jclepro.2018.05.009
You do not currently have access to this content.