Abstract

With continued global market growth and an increasingly competitive environment, manufacturing industry is facing challenges and desires to seek continuous improvement. This effect is forcing manufacturers to squeeze every asset for maximum value and thereby calls for high-equipment effectiveness, and at the same time flexible and resilient manufacturing systems. Maintenance operations are essential to modern manufacturing systems in terms of minimizing unplanned down time, assuring product quality, reducing customer dissatisfaction, and maintaining advantages and competitiveness edge in the market. It has a long history that manufacturers struggle to find balanced maintenance strategies without significantly compromising system reliability or productivity. Intelligent maintenance systems (IMS) are designed to provide decision support tools to optimize maintenance operations. Intelligent prognostic and health management tools are imperative to identify effective, reliable, and cost-saving maintenance strategies to ensure consistent production with minimized unplanned downtime. This article aims to present a comprehensive review of the recent efforts and advances in prominent methods for maintenance in manufacturing industries over the last decades, identifying the existing research challenges, and outlining directions for future research.

References

1.
Spiewak
,
S. A.
,
Duggirala
,
R.
, and
Barnett
,
K.
,
2000
, “
Predictive Monitoring and Control of the Cold Extrusion Process
,”
CIRP Ann.—Manuf. Technol.
,
49
(
1
), pp.
383
386
.
2.
Bourliere
,
F.
, and
Petter-Rousseaux
,
A.
,
1953
, “
Imperfect Maintenance of Homothermal Body Temperature in Certain Prosimians
,”
C. R. Seances Soc. Biol. Fil.
,
147
, pp.
1594
1595
.
3.
Chitra
,
T.
,
2003
, “
Life Based Maintenance Policy for Minimum Cost
,”
Annu. Reliab. Maintainab. Symp.
,
2003
, pp.
470
474
.
4.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.
5.
Marseguerra
,
M.
,
Zio
,
E.
, and
Podofillini
,
L.
,
2002
, “
Condition-based Maintenance Optimization by Means of Genetic Algorithms and Monte Carlo Simulation
,”
Reliab. Eng. Syst. Saf.
,
77
(
2
), pp.
151
165
.
6.
Matyas
,
K.
,
Nemeth
,
T.
,
Kovacs
,
K.
, and
Glawar
,
R.
,
2017
, “
A Procedural Approach for Realizing Prescriptive Maintenance Planning in Manufacturing Industries
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
461
464
.
7.
Kalgren
,
P. W.
,
Byington
,
C. S.
,
Roemer
,
M. J.
, and
Watson
,
M. J.
,
2006
, “
Defining PHM, A Lexical Evolution of Maintenance and Logistics
,”
IEEE AUTOTESTCON 2006 Conference Record
,
Anaheim, CA
.
8.
Sheppard
,
J. W.
,
Kaufman
,
M. A.
, and
Wilmering
,
T. J.
,
2008
, “
IEEE Standards for Prognostics and Health Management
,”
2008 IEEE AUTOTESTCON
,
Salt Lake City, UT
,
Sept. 8–11
, pp.
34
41
.
9.
Jeong
,
H.
,
Park
,
B.
,
Park
,
S.
,
Min
,
H.
, and
Lee
,
S.
,
2019
, “
Fault Detection and Identification Method Using Observer-Based Residuals
,”
Reliab. Eng. Syst. Saf.
,
184
, pp.
27
40
.
10.
Lee
,
J.
,
Ni
,
J.
,
Djurdjanovic
,
D.
,
Qiu
,
H.
, and
Liao
,
H.
,
2006
, “
Intelligent Prognostics Tools and e-Maintenance
,”
Comput. Ind.
,
57
(
6
), pp.
476
489
.
11.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.-a.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
.
12.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
799
834
.
13.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
14.
Liu
,
H.
, and
Motoda
,
H.
,
1998
,
Feature Extraction Construction and Selection: A Data Mining Perspective
,
Springer Science & Business Media
, p.
1390
.
15.
Ginart
,
A.
,
Barlas
,
I.
,
Goldin
,
J.
, and
Dorrity
,
J. L.
,
2007
, “
Automated Feature Selection for Embeddable Prognostic and Health Monitoring (PHM) Architectures
,”
AUTOTESTCON (Proceedings)
, pp.
195
201
.
16.
Jia
,
X.
,
Jin
,
C.
,
Buzza
,
M.
,
Wang
,
W.
, and
Lee
,
J.
,
2016
, “
Wind Turbine Performance Degradation Assessment Based on a Novel Similarity Metric for Machine Performance Curves
,”
Renewable Energy
,
99
, pp.
1191
1201
.
17.
Benkedjouh
,
T.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Rechak
,
S.
,
2015
, “
Health Assessment and Life Prediction of Cutting Tools Based on Support Vector Regression
,”
J. Intell. Manuf.
,
26
(
2
), pp.
213
223
.
18.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C. C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
724
739
.
19.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.
20.
Pandhare
,
V.
,
Singh
,
J.
, and
Lee
,
J.
,
2019
, “
Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features
,”
2019 Progn. Syst. Heal. Manag. Conf.
,
Paris, France
,
May 2–5
, IEEE, pp.
320
326
.
21.
Singh
,
J.
,
Darpe
,
A. K.
, and
Singh
,
S. P.
,
2018
, “
Rolling Element Bearing Fault Diagnosis Based on Over-Complete Rational Dilation Wavelet Transform and Auto-Correlation of Analytic Energy Operator
,”
Mech. Syst. Signal Process.
,
100
, pp.
662
693
.
22.
Singh
,
J.
,
Darpe
,
A. K.
, and
Singh
,
S. P.
,
2017
, “
Bearing Damage Assessment Using Jensen-Rényi Divergence Based on EEMD
,”
Mech. Syst. Signal Process.
,
87
, pp.
307
339
.
23.
Singh
,
J.
,
Darpe
,
A. K.
, and
Singh
,
S. P.
,
2019
, “
Bearing Remaining Useful Life Estimation Using an Adaptive Data Driven Model Based on Health State Change Point Identification and K-Means Clustering
,”
Measur. Sci. Technol.
,
31
(
8
), p.
085601
.
24.
Azamfar
,
M.
,
Jia
,
X.
,
Pandhare
,
V.
,
Singh
,
J.
,
Davari
,
H.
, and
Lee
,
J.
,
2019
, “
Detection and Diagnosis of Bottle Capping Failures Based on Motor Current Signature Analysis
,”
Procedia Manuf.
,
34
, pp.
840
846
.
25.
Singh
,
J.
,
Azamfar
,
M.
,
Ainapure
,
A.
, and
Lee
,
J.
,
2019
, “
Deep Learning Based Cross Domain Adaptation for Gearbox Fault Diagnosis Under Variable Speed Conditions
,”
Measur. Sci. Technol.
,
31
(
5
), p.
055601
.
26.
Islam
,
M. R.
,
Uddin
,
J.
, and
Kim
,
J. M.
,
2016
, “
Acoustic Emission Sensor Network Based Fault Diagnosis of Induction Motors Using a Gabor Filter and Multiclass Support Vector Machines
,”
Adhoc Sens. Wirel. Networks
,
34
.
27.
Islam
,
R.
,
Khan
,
S. A.
, and
Kim
,
J.
,
2016
, “
Discriminant Feature Distribution Analysis-Based Hybrid Feature Selection for Online Bearing Fault Diagnosis in Induction Motors
,”
J. Sens.
,
2016
, pp.
1
16
.
28.
Tandon
,
N.
,
Yadava
,
G. S.
, and
Ramakrishna
,
K. M.
,
2007
, “
A Comparison of Some Condition Monitoring Techniques for the Detection of Defect in Induction Motor Ball Bearings
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
244
256
.
29.
Lau
,
E. C. C.
, and
Ngan
,
H. W.
,
2010
, “
Detection of Motor Bearing Outer Raceway Defect by Wavelet Packet Transformed Motor Current Signature Analysis
,”
IEEE Trans. Instrum. Meas.
,
59
(
10
), pp.
2683
2690
.
30.
Al-Ghamd
,
A. M.
, and
Mba
,
D.
,
2006
, “
A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1537
1571
.
31.
Pan
,
M. C.
, and
Tsao
,
W. C.
,
2013
, “
Using Appropriate IMFs for Envelope Analysis in Multiple Fault Diagnosis of Ball Bearings
,”
Int. J. Mech. Sci.
,
69
, pp.
114
124
.
32.
Oh
,
H.
,
Azarian
,
M.
, and
Pecht
,
M.
,
2011
, “
Estimation of Fan Bearing Degradation Using Acoustic Emission Analysis and Mahalonabis Distance
,”
Proc. Appl. Syst. Heal. Manag. Conf.
, pp.
1
12
.
33.
Pan
,
Y.
,
Hong
,
R.
,
Chen
,
J.
,
Singh
,
J.
, and
Jia
,
X.
,
2019
, “
Performance Degradation Assessment of a Wind Turbine Gearbox Based on Multi-Sensor Data Fusion
,”
Mechanism Mach. Theory
,
137
, pp.
509
526
.
34.
Loutas
,
T. H.
,
Roulias
,
D.
,
Pauly
,
E.
, and
Kostopoulos
,
V.
,
2011
, “
The Combined Use of Vibration, Acoustic Emission and oil Debris on-Line Monitoring Towards a More Effective Condition Monitoring of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1339
1352
.
35.
Khaleghi
,
B.
,
Khamis
,
A.
,
Karray
,
F. O.
, and
Razavi
,
S. N.
,
2013
, “
Multisensor Data Fusion: A Review of the State-of-the-Art
,”
Inf. Fusion
,
14
(
1
), pp.
28
44
.
36.
Gunerkar
,
R. S.
, and
Jalan
,
A. K.
,
2019
, “
Classification of Ball Bearing Faults Using Vibro-Acoustic Sensor Data Fusion
,”
Exp. Tech.
,
43
(
5
), pp.
635
643
.
37.
Jing
,
L.
,
Wang
,
T.
,
Zhao
,
M.
, and
Wang
,
P.
,
2017
, “
An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox
,”
Sensors (Switzerland)
,
17
.
38.
Chen
,
Z.
, and
Li
,
W.
,
2017
, “
Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network
,”
IEEE Trans. Instrum. Meas.
,
66
(
7
), pp.
1693
1702
.
39.
Lu
,
Y.
,
Tang
,
J.
, and
Luo
,
H.
,
2011
, “
Wind Turbine Gearbox Fault Detection Using Multiple Sensors With Feature Level Data Fusion
,”
Proc. ASME Turbo Expo
.
40.
Cheng
,
G.
,
Chen
,
X.
,
Li
,
H.
,
Li
,
P.
, and
Liu
,
H.
,
2016
, “
Study on Planetary Gear Fault Diagnosis Based on Entropy Feature Fusion of Ensemble Empirical Mode Decomposition
,”
Meas. J. Int. Meas. Confed.
,
91
, pp.
140
154
.
41.
Khazaee
,
M.
,
Ahmadi
,
H.
,
Omid
,
M.
,
Moosavian
,
A.
, and
Khazaee
,
M.
,
2014
, “
Classifier Fusion of Vibration and Acoustic Signals for Fault Diagnosis and Classification of Planetary Gears Based on Dempster-Shafer Evidence Theory
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
228
(
1
), pp.
21
32
.
42.
Peng
,
Y.
,
Qiao
,
W.
,
Qu
,
L.
, and
Wang
,
J.
,
2016
, “
Gearbox Fault Diagnosis Using Vibration and Current Information Fusion
,”
ECCE 2016—IEEE Energy Convers. Congr. Expo. Proc
,
Milwaukee, WI
,
Sept. 18–22
, pp.
1
6
.
43.
Azamfar
,
M.
,
Singh
,
J.
,
Bravo-imaz
,
I.
, and
Lee
,
J.
,
2020
, “
Multisensor Data Fusion for Gearbox Fault Diagnosis Using 2-D Convolutional Neural Network and Motor Current Signature Analysis
,”
Mech. Syst. Signal Process.
,
144
, p.
106861
.
44.
Jiang
,
L.
,
Yin
,
H.
,
Li
,
X.
, and
Tang
,
S.
,
2014
, “
Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features
,”
Shock Vib.
,
2014
, pp.
1
8
.
45.
Rai
,
A.
, and
Upadhyay
,
S. H.
,
2016
, “
A Review on Signal Processing Techniques Utilized in the Fault Diagnosis of Rolling Element Bearings
,”
Tribol. Int.
,
96
, pp.
289
306
.
46.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
.
47.
Cerrada
,
M.
,
Sánchez
,
R.
,
Li
,
C.
,
Pacheco
,
F.
, and
Cabrera
,
D.
,
2018
, “
A Review on Data-Driven Fault Severity Assessment in Rolling Bearings
,”
Mech. Syst. Signal Process.
,
99
, pp.
169
196
.
48.
Singh
,
J.
,
Azamfar
,
M.
,
Li
,
F.
, and
Lee
,
J.
,
2020
, “
A Systematic Review of Machine Learning Algorithms for PHM of Rolling Element Bearings: Fundamentals, Concepts, and Applications
,”
Meas. Sci. Technol.
49.
Nie
,
M.
, and
Wang
,
L.
,
2013
, “
Review of Condition Monitoring and Fault Diagnosis Technologies for Wind Turbine Gearbox
,”
Procedia CIRP.
,
11
, pp.
287
290
.
50.
Lei
,
Y.
,
Lin
,
J.
,
Zuo
,
M. J.
, and
He
,
Z.
,
2014
, “
Condition Monitoring and Fault Diagnosis of Planetary Gearboxes: A Review
,”
Meas. J. Int. Meas. Confed.
,
48
, pp.
292
305
.
51.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
.
52.
Plazenet
,
T.
,
Member
,
S.
,
Boileau
,
T.
, and
Caironi
,
C.
,
2018
, “
A Comprehensive Study on Shaft Voltages and Bearing Currents in Rotating Machines
,”
IEEE Trans. Ind. Appl.
,
54
(
4
), pp.
3749
3759
.
53.
Chun
,
B.
,
Lau
,
P.
,
Wai
,
E.
, and
Ma
,
M.
,
2012
, “
Review of Offshore Wind Turbine Failures and Fault Prognostic Methods
,”
Proc. IEEE 2012 Progn. Syst. Heal. Manag. Conf. (PHM-2012 Beijing)
,
Beijing, China
,
May 23–25
, pp.
1
5
.
54.
Tchakoua
,
P.
,
Wamkeue
,
R.
,
Ouhrouche
,
M.
,
Slaoui-hasnaoui
,
F.
,
Tameghe
,
T. A.
, and
Ekemb
,
G.
,
2014
, “
Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges
,
Energies
,
7
(
4
), pp.
2595
2630
.
55.
Kandukuri
,
S. T.
,
Klausen
,
A.
,
Karimi
,
H. R.
, and
Robbersmyr
,
K. G.
,
2016
, “
A Review of Diagnostics and Prognostics of low-Speed Machinery Towards Wind Turbine Farm-Level Health Management
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
697
708
.
56.
Coble
,
J.
,
Bond
,
L. J.
,
Hines
,
J. W.
, and
Ipadhyaya
,
B.
,
2015
, “
A Review of Prognostics and Health Management Applications in Nuclear Power Plants
,”
Int. J. Prognostics Health Manage.
,
6
, p.
016
.
57.
Lall
,
P.
,
Member
,
S.
,
Hande
,
M.
,
Bhat
,
C.
, and
Lee
,
J.
,
2011
, “
Prognostics Health Monitoring (PHM) for Prior Damage Assessment in Electronics Equipment Under Thermo-Mechanical Loads, IEEE Trans. Components
,”
Packag. Manuf. Technol.
,
1
(
11
), pp.
1774
1789
.
58.
Ginart
,
A. E.
,
Brown
,
D. W.
,
Kalgren
,
P. W.
, and
Roemer
,
M. J.
,
2009
, “
Online Ringing Characterization as a Diagnostic Technique for IGBTs in Power Drives
,”
IEEE Trans. Instrum. Meas.
,
58
(
7
), pp.
2290
2299
.
59.
Baybutt
,
M.
,
Minnella
,
C.
,
Ginart
,
A. E.
, and
Roemer
,
M. J.
,
2009
, “
Improving Digital System Diagnostics Through Prognostic and Health Management (PHM) Technology
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
255
262
.
60.
Zhao
,
W.
,
2014
, “
An Integrated Framework of Performance Assessment and Drivetrain Prognostics for Wind Turbines
,”
MS thesis
,
University of Cincinnati, Engineering and Applied Science: Mechanical Engineering
, p.
100
.
61.
Celaya
,
J. R.
,
Saxena
,
A.
,
Kulkarni
,
C. S.
,
Saha
,
S.
, and
Goebel
,
K.
,
2012
, “
Prognostics Approach for Power MOSFET Under Thermal-Stress Aging
,”
Proc.—Annu. Reliab. Maintainab. Symp
.
62.
Ferrell
,
B. L.
,
2000
, “
Air Vehicle Prognostics and Health Management
,”
2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484)
,
Big Sky, MT
,
Mar. 25
.
63.
Powrie
,
H. E. G.
, and
Fisher
,
C. E.
,
1999
, “
Engine Health Monitoring: Towards Total Prognostics
,”
1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403)
,
Snowmass at Aspen, CO
,
Mar. 7
.
64.
Yang
,
Q.
,
Singh
,
J.
, and
Lee
,
J.
,
2019
, “
Isolation-Based Feature Selection for Unsupervised Outlier Detection
,”
Proc. Annu. Conf. PHM Soc.
,
2017
, pp.
1
8
.
65.
Jia
,
X.
,
Huang
,
B.
,
Feng
,
J.
,
Cai
,
H.
, and
Lee
,
J.
,
2017
, “
Review of PHM Data Competitions From 2008 to 2017 : Methodologies and Analytics
,”
Annual Conference of the Prognostics and Health Management Society 2018
,
Philadelphia, PA
,
Sept. 24–28
, pp.
1
10
.
66.
Cho
,
D. I.
,
1991
, “
Invited Review A Survey of Maintenance Models for Multi- Unit Systems
,”
Eur. J. Oper. Res.
,
51
(
1
), pp.
1
23
.
67.
Nicolai
,
R. P.
, and
Dekker
,
R.
,
2008
, “
Optimal Maintenance of Multi-Component Systems: A Review, Springer Ser
,”
Reliab. Eng.
,
8
, pp.
263
286
.
68.
Wang
,
H.
,
2002
, “
A Survey of Maintenance Problems of Deteriorating Systems
,”
Eur. J. Oper. Res.
,
139
(
3
), pp.
469
489
.
69.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
661
668
.
70.
Chang
,
Q.
,
Biller
,
S.
, and
Xiao
,
G.
,
2010
, “
Transient Analysis of Downtimes and Bottleneck Dynamics in Serial Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051015
.
71.
Liu
,
J.
,
Chang
,
Q.
,
Xiao
,
G.
, and
Biller
,
S.
,
2012
, “
The Costs of Downtime Incidents in Serial Multistage Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021016
.
72.
Gu
,
X.
,
Lee
,
S.
,
Liang
,
X.
,
Garcellano
,
M.
,
Diederichs
,
M.
, and
Ni
,
J.
,
2013
, “
Hidden Maintenance Opportunities in Discrete and Complex Production Lines
,”
Expert Syst. Appl.
,
40
(
11
), pp.
4353
4361
.
73.
Meerkov
,
S. M.
, and
Zhang
,
L.
,
2008
, “
Transient Behavior of Serial Production Lines With Bernoulli Machines
,”
IIE Trans. (Inst. Ind. Eng.)
,
40
, pp.
297
312
.
74.
Srinivasan
,
M. M.
, and
Lee
,
H. S.
,
1996
, “
Production-inventory Systems With Preventive Maintenance
,”
IIE Trans. (Inst. Ind. Eng.)
,
28
, pp.
879
890
.
75.
Cheung
,
K. L.
, and
Hausman
,
W. H.
,
1997
, “
Joint Determination of Preventive Maintenance and Safety Stocks in an Unreliable Production Environment
,”
Nav. Res. Logist.
,
44
, pp.
257
272
.
76.
Chelbi
,
A.
, and
Ait-Kadi
,
D.
,
2004
, “
Analysis of a Production/Inventory System With Randomly Failing Production Unit Submitted to Regular Preventive Maintenance
,”
Eur. J. Oper. Res.
,
156
(
3
), pp.
712
718
.
77.
Kyriakidis
,
E. G.
, and
Dimitrakos
,
T. D.
,
2006
, “
Optimal Preventive Maintenance of a Production System With an Intermediate Buffer
,”
Eur. J. Oper. Res.
,
168
(
1
), pp.
86
99
.
78.
Jin
,
X.
,
Li
,
L.
, and
Ni
,
J.
,
2009
, “
Option Model for Joint Production and Preventive Maintenance System
,”
Int. J. Prod. Econ.
,
119
(
2
), pp.
347
353
.
79.
Theory of Constraints
. (
n.d.
), Focus Improvement on the Manufacturing Constraint.
80.
Cox
,
J.
,
1983
, “
The Goal
,”
J. Am. Med. Assoc.
,
250
(
3
), p.
407
.
81.
Bertolini
,
S.
,
2000
, “
Theory of Epsilon-Prime/Epsilon
,”
5th International Symposium on Radiative Corrections – RADCOR 2000
,
Carmel, CA
.
82.
Lawrence
,
S. R.
, and
Buss
,
A. H.
,
1994
, “
Shifting Production Bottlenecks: Causes, Cures, and Conundrums
, pp.
21
34
.
83.
Law
,
A. M.
, and
Kelton
,
W. D.
,
2000
,
Simulation Modeling and Analysis
,
McGraw-Hill
,
New York
.
84.
Li
,
L.
,
Chang
,
Q.
, and
Ni
,
J.
,
2009
, “
Data Driven Bottleneck Detection of Manufacturing Systems
,”
Int. J. Prod. Res.
,
47
(
18
), pp.
5019
5036
.
85.
Musselman
,
K.
,
Reilly
,
J. O.
, and
Steven
,
D.
,
2002
, “
The Role of Simulation in Advanced Planning and Scheduling
,”
Winter Simulation Conference
,
San Diego, CA
,
Dec. 8–11
, pp.
1825
1830
.
86.
Leporis
,
M.
, and
Kralova
,
Z.
,
2010
, “
A Simulation Approach To Production Line Bottleneck Analysis
,”
Int. Conf. Cybern. Informatics
, pp.
1
10
.
87.
Moss
,
H. K.
, and
Bin Yu
,
W.
,
1999
, “
Toward the Estimation of Bottleneck Shiftiness in a Manufacturing Operation
,”
Prod. Invent. Manage. J.
,
40
, p.
53
.
88.
Ye
,
W. M.
, and
Han
,
T. F.
,
2005
, “
Method of Simulation on Determining Bottleneck Resource
,”
J. East China Shipbuild. Inst. (Nat. Sci. Ed.)
,
17
(
4
), pp.
80
84
.
89.
Li
,
L.
,
Chang
,
Q.
,
Xiao
,
G.
, and
Ambani
,
S.
,
2011
, “
Throughput Bottleneck Prediction of Manufacturing Systems Using Time Series Analysis
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021015
.
90.
Liu
,
L.
,
Tang
,
M. Z.
,
Ge
,
J.
,
Jiang
,
M.
,
Hu
,
Z. Q.
, and
Ling
,
J.
,
2009
, “
Dynamic Prediction Method of Production Logistics Bottleneck Based on Bottleneck Index
,”
Chin. J. Mech. Eng.
,
22
(
5
), pp.
710
716
.
91.
Cao
,
Z.
,
Deng
,
J.
,
Liu
,
M.
, and
Wang
,
Y.
,
2012
, “
Bottleneck Prediction Method Based on Improved Adaptive Network-Based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System
,”
Chin. J. Chem. Eng.
,
20
(
6
), pp.
1081
1088
.
92.
Lai
,
X.
,
Shui
,
H.
, and
Ni
,
J.
,
2018
, “
A Two-Layer Long Short-Term Memory Network for Bottleneck Prediction in Multi-Job Manufacturing Systems
,”
International Manufacturing Science and Engineering Conference
,
ASME
, p.
V003T02A014
.
93.
Hochreiter
,
S.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
94.
Azzouni
,
A.
, and
Pujolle
,
G.
,
2017
,
A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction; arXiv preprint arXiv:1705.05690
.
95.
Zhong
,
J.
,
Liu
,
J.
, and
Shi
,
J.
,
2010
, “
Predictive Control Considering Model Uncertainty for Variation Reduction in Multistage Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
724
735
.
96.
Hu
,
S. J.
, and
Koren
,
Y.
,
1997
, “
Stream-of-Variation Theory for Automotive Body Assembly
,”
CIRP Ann.
,
46
(
1
), pp.
1
6
.
97.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2005
, “
Process-oriented Tolerancing for Multi-Station Assembly Systems
,”
IIE Trans. (Institute Ind. Eng.)
,
37
, pp.
493
508
.
98.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
99.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
100.
Huang
,
Q.
, and
Shi
,
J.
,
2004
, “
Stream of Variation Modeling and Analysis of Serial-Parallel Multistage Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
611
618
.
101.
Huang
,
Q.
,
Zhou
,
S.
, and
Shi
,
J.
,
2002
, “
Diagnosis of Multi-Operational Machining Processes Through Variation Propagation Analysis
,”
Rob. Comput. Integr. Manuf.
,
18
(
3–4
), pp.
233
239
.
102.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2004
, “
Measurement Scheme Synthesis in Multi-Station Machining Systems
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
178
188
.
103.
Liu
,
J.
,
Shi
,
J.
, and
Hu
,
J. J.
,
2009
, “
Quality-assured Setup Planning Based on the Stream-of-Variation Model for Multi-Stage Machining Processes
,”
IIE Trans. (Inst. Ind. Eng.)
,
41
, pp.
323
334
.
104.
Jiao
,
Y.
, and
Djurdjanovic
,
D.
,
2010
, “
Joint Allocation of Measurement Points and Controllable Tooling Machines in Multistage Manufacturing Processes
,”
IIE Trans. (Inst. Ind. Eng.)
,
42
, pp.
703
720
.
105.
Zhang
,
L.
,
Ni
,
J.
, and
Lai
,
X.
,
2008
, “
Dimensional Errors of Rollers in the Stream of Variation Modeling in Cold Roll Forming Process of Quadrate Steel Tube
,”
Int. J. Adv. Manuf. Technol.
,
37
(
11–12
), pp.
1082
1092
.
106.
Shui
,
H.
,
Jin
,
X.
, and
Ni
,
J.
,
2019
, “
Twofold Variation Propagation Modeling and Analysis for Roll-to-Roll Manufacturing Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
2
), pp.
599
612
.
107.
Jin
,
X.
,
Shui
,
H.
, and
Shpitalni
,
M.
,
2019
, “
Virtual Sensing and Virtual Metrology for Spatial Error Monitoring of Roll-to-Roll Manufacturing Systems
,”
CIRP Ann.
,
68
(
1
), pp.
491
494
.
108.
Du
,
S.
,
Xi
,
L.
,
Ni
,
J.
,
Ershun
,
P.
, and
Liu
,
C. R.
,
2008
, “
Product Lifecycle-Oriented Quality and Productivity Improvement Based on Stream of Variation Methodology
,”
Comput. Ind.
,
59
(
2–3
), pp.
180
192
.
109.
Zhou
,
S.
,
Chen
,
Y.
,
Ding
,
Y.
, and
Shi
,
J.
,
2003
, “
Diagnosability Study of Multistage Manufacturing Processes Based on Linear Mixed-Effects Models
,”
Technometrics.
,
45
(
4
), pp.
312
325
.
110.
Ding
,
Y.
,
Kim
,
P.
,
Ceglarek
,
D.
, and
Jin
,
J.
,
2003
, “
Optimal Sensor Distribution for Variation Diagnosis in Multistation Assembly Processes
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
543
556
.
111.
Shiu
,
B. W.
,
Apley
,
D. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2003
, “
Tolerance Allocation for Compliant Beam Structure Assemblies
,”
IIE Trans. (Institute Ind. Eng.)
,
35
, pp.
329
342
.
112.
Abellán-Nebot
,
J. V.
,
Liu
,
J.
, and
Subirón
,
F. R.
,
2013
, “
Process-oriented Tolerancing Using the Extended Stream of Variation Model
,”
Comput. Ind.
,
64
(
5
), pp.
485
498
.
113.
Abellan-Nebot
,
J. V.
,
Liu
,
J.
,
Subirón
,
F. R.
, and
Shi
,
J.
,
2012
, “
State Space Modeling of Variation Propagation in Multistation Machining Processes Considering Machining-Induced Variations
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021002
.
114.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2007
, “
Online Stochastic Control of Dimensional Quality in Multistation Manufacturing Systems
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
221
(
5
), pp.
865
880
.
115.
Djurdjanović
,
D.
,
Jiao
,
Y.
, and
Majstorović
,
V.
,
2017
, “
Multistage Manufacturing Process Control Robust to Inaccurate Knowledge About Process Noise
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
437
440
.
116.
Ly
,
C.
,
Tom
,
K.
,
Byington
,
C. S.
,
Patrick
,
R.
, and
Vachtsevanos
,
G. J.
,
2009
, “
Fault Diagnosis and Failure Prognosis for Engineering Systems: A Global Perspective
,”
2009 IEEE International Conference on Automation Science and Engineering, CASE 2009
,
Bangalore, India
,
Aug. 22–25
, pp.
108
115
.
117.
Lee
,
J.
,
2003
, “
E-manufacturing—Fundamental, Tools, and Transformation
,”
Robot. Comput. Integr. Manuf.
,
19
(
6
), pp.
501
507
.
118.
Koc
,
M.
,
Ni
,
J.
,
Lee
,
J.
, and
Bandyopadhyay
,
P. K.
,
2002
, “
Introduction of e-Manufacturing
,”
Proceeding of 31st North American Manufacturing Research Conference
, pp.
1
10
.
119.
Cheng
,
K.
, and
Bateman
,
R. J.
,
2008
, “
e-Manufacturing : Characteristics, Applications and Potentials
,”
Prog. Nat. Sci.
,
18
(
11
), pp.
1323
1328
.
120.
Zhang
,
D. Z.
,
Anosike
,
A. I.
, and
Lim
,
M. K.
,
2006
, “
An Agent-Based Approach for e-Manufacturing and Supply Chain Integration
,”
Comput. Ind. Eng.
,
51
, pp.
343
360
.
121.
Panetto
,
H.
, and
Molina
,
A.
,
2008
, “
Enterprise Integration and Interoperability in Manufacturing Systems: Trends and Issues
,”
Comput. Ind.
,
59
, pp.
641
646
.
122.
Pham
,
D. T.
,
Pham
,
P. T. N.
, and
Thomas
,
A.
,
2008
, “
Integrated Production Machines and Systems—Beyond Lean Manufacturing
,”
J. Manuf. Technol. Manage.
,
19
, pp.
695
711
.
123.
2000
,
An e-Manufacturing Strategy Needs to be Developed From the Manufacturing Strategy
,
AMR Res. Inc.
124.
Lee
,
J.
,
Koç
,
M.
, and
Ni
,
J.
,
2002
, “
Introduction of e-Manufacturing
,”
Proceeding Int. Conf. Front. Des. Manuf.
, pp.
43
47
.
125.
Morel
,
Ã
,
Valckenaers
,
P.
,
Faure
,
J.
,
Pereira
,
C. E.
, and
Diedrich
,
C.
,
2007
, “
Manufacturing Plant Control Challenges and Issues
,”
Control Eng. Pract.
,
15
, pp.
1321
1331
.
126.
Hon
,
K. K. B.
,
2005
, “
Performance and Evaluation of Manufacturing Systems
,”
CIRP Ann.
,
54
, pp.
139
154
.
127.
Asthon
,
K.
,
2009
, “
That ‘Internet of Things’ Thing
,”
RFID J.
,
22
(
7
), pp.
97
114
.
128.
Atzori
,
L.
,
Iera
,
A.
, and
Morabito
,
G.
,
2010
, “
The Internet of Things: A Survey
,”
Comput. Networks
,
54
(
15
), pp.
2787
2805
.
129.
Welbourne
,
E.
,
Battle
,
L.
,
Cole
,
G.
,
Gould
,
K.
,
Rector
,
K.
,
Raymer
,
S.
, and
Balazinska
,
M.
,
2009
, “
Building the Internet of Things Using RFID: The RFID Ecosystem Experience
,”
IEEE Internet Comput.
,
13
, pp.
48
55
.
130.
Buettner
,
M.
,
Greenstein
,
B.
,
Sample
,
A.
,
Smith
,
J. R.
, and
Wetherall
,
D.
,
2008
, “
Revisiting Smart Dust With RFID Sensor Networks
,”
Proc. 7th ACM Work. Hot Top. Networks
,
Calgary, Alberta, Canada
,
Oct. 6–7
, pp.
1
132
.
131.
Bi
,
Z.
,
Da Xu
,
L.
, and
Wang
,
C.
,
2014
, “
Internet of Things for Enterprise Systems of Modern Manufacturing
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1537
1546
.
132.
Shrouf
,
F.
,
Ordieres
,
J.
, and
Miragliotta
,
G.
,
2014
, “
Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm
,”
IEEE International Conference on Industrial Engineering and Engineering Management
,
Jan
.
2015
, pp.
697
701
.
133.
Zhong
,
R. Y.
,
Xu
,
X.
,
Klotz
,
E.
, and
Newman
,
S. T.
,
2017
, “
Intelligent Manufacturing in the Context of Industry 4.0: A Review
,”
Engineering
,
3
(
5
), pp.
616
630
.
134.
Qu
,
T.
,
Lei
,
S. P.
,
Wang
,
Z. Z.
,
Nie
,
D. X.
,
Chen
,
X.
, and
Huang
,
G. Q.
,
2016
, “
IoT-based Real-Time Production Logistics Synchronization System Under Smart Cloud Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
84
(
1–4
), pp.
147
164
.
135.
Zhang
,
Y.
,
Zhang
,
G.
,
Wang
,
J.
,
Sun
,
S.
,
Si
,
S.
, and
Yang
,
T.
,
2015
, “
Real-time Information Capturing and Integration Framework of the Internet of Manufacturing Things
,”
Int. J. Comput. Integr. Manuf.
,
28
(
8
), pp.
811
822
.
136.
Gungor
,
V. C.
, and
Hancke
,
G. P.
,
2009
, “
Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
4258
4265
.
137.
Song
,
T.
,
Li
,
R.
,
Mei
,
B.
,
Yu
,
J.
,
Xing
,
X.
, and
Cheng
,
X.
,
2018
, “
A Privacy Preserving Communication Protocol for IoT Applications in Smart Homes
,”
IEEE Internet Things J.
,
4
(
6
), pp.
1844
1852
.
138.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
, pp.
157
169
.
139.
Lee
,
J.
,
Ardakani
,
H. D.
,
Yang
,
S.
, and
Bagheri
,
B.
,
2015
, “
Industrial Big Data Analytics and Cyber-Physical Systems for Future Maintenance & Service Innovation
,”
Procedia CIRP.
,
38
, pp.
3
7
.
140.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
, and
Ni
,
J.
,
2015
, “
Production-driven Opportunistic Maintenance for Batch Production Based on MAM-APB Scheduling
,”
Eur. J. Oper. Res.
,
240
(
3
), pp.
781
790
.
141.
Wan
,
J.
,
Tang
,
S.
,
Li
,
D.
,
Wang
,
S.
,
Liu
,
C.
,
Abbas
,
H.
, and
Vasilakos
,
A. V.
,
2017
, “
A Manufacturing Big Data Solution for Active Preventive Maintenance
,”
IEEE Trans. Ind. Inf.
,
13
(
4
), pp.
2039
2047
.
142.
Kwon
,
D.
,
Hodkiewicz
,
M. R.
,
Fan
,
J.
,
Shibutani
,
T.
, and
Pecht
,
M. G.
,
2016
, “
IoT-Based Prognostics and Systems Health Management for Industrial Applications
,”
IEEE Access.
,
4
, pp.
3659
3670
.
143.
Lee
,
J.
,
2015
, “
Smart Factory Systems
,”
Informatik-Spektrum
,
38
(
3
), pp.
230
235
.
144.
Hossain
,
M. S.
, and
Muhammad
,
G.
,
2016
, “
Cloud-Assisted Industrial Internet of Things (IIoT)—Enabled Framework for Health Monitoring
,”
Comput. Networks
,
101
, pp.
192
202
.
145.
Hassanalieragh
,
M.
,
Page
,
A.
,
Soyata
,
T.
,
Sharma
,
G.
,
Aktas
,
M.
,
Mateos
,
G.
,
Kantarci
,
B.
, and
Andreescu
,
S.
,
2015
, “
Health Monitoring and Management Using Internet-of-Things (IoT) Sensing With Cloud-Based Processing: Opportunities and Challenges
,”
2015 IEEE International Conference on Services Computing
,
New York City, NY
,
June 27–July 2
, pp.
285
292
.
146.
Shen
,
W.
,
Hao
,
Q.
, and
Li
,
W.
,
2008
, “
Computer Supported Collaborative Design: Retrospective and Perspective
,”
Comput. Ind.
,
59
(
9
), pp.
855
862
.
147.
Alam
,
S.
,
Chowdhury
,
M. M. R.
, and
Noll
,
J.
,
2011
, “
Interoperability of Security-Enabled Internet of Things
,”
Wireless Pers. Commun.
,
61
(
3
), pp.
567
586
.
148.
Zhou
,
J.
,
Cao
,
Z.
,
Dong
,
X.
, and
Vasilakos
,
A. V.
,
2017
, “
Security and Privacy for Cloud-Based IoT: Challenges
,”
IEEE Commun. Mag.
,
55
(
1
),
26
33
.
149.
Shahid
,
N.
, and
Aneja
,
S.
,
2017
, “
Internet of Things: Vision, Application Areas and Research Challenges
,”
IEEE International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
,
SCAD Institute of Technology, Palladam
,
Feb. 10–11
, vol.
10
, pp.
583
587
.
150.
Khan
,
M. A.
, and
Salah
,
K.
,
2018
, “
IoT Security: Review, Blockchain Solutions, and Open Challenges
,”
Future Gener. Comput. Syst.
,
82
, pp.
395
411
.
151.
Zhang
,
Y.
, and
Wen
,
J.
,
2017
, “
The IoT Electric Business Model: Using Blockchain Technology for the Internet of Things
,”
Peer-to-Peer Netw. Appl.
,
10
(
4
), pp.
983
994
.
152.
Novo
,
O.
,
2018
, “
Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT
,”
IEEE Internet Things J.
,
5
(
2
), pp.
1184
1195
.
153.
Sharma
,
P. K.
,
Chen
,
M. Y.
, and
Park
,
J. H.
,
2018
, “
A Software Defined Fog Node Based Distributed Blockchain Cloud Architecture for IoT
,”
IEEE Access
,
6
, pp.
115
124
.
154.
Nir
,
K.
,
2017
, “
Can Blockchain Strenghtne the IoT?
IT Professional
,
19
(
4
), pp.
68
72
.
155.
Reyna
,
A.
,
Martín
,
C.
,
Chen
,
J.
,
Soler
,
E.
, and
Díaz
,
M.
,
2018
, “
On Blockchain and Its Integration With IoT. Challenges and Opportunities
,”
Future Gener. Comput. Syst.
,
88
, pp.
173
190
.
156.
Christidis
,
K.
, and
Devetsikiotis
,
M.
,
2016
, “
Blockchains and Smart Contracts for the Internet of Things
,”
IEEE Access
,
4
, pp.
2292
2303
.
157.
Lee
,
J.
,
Azamfar
,
M.
, and
Singh
,
J.
,
2019
, “
A Blockchain Enabled Cyber-Physical System Architecture for Industry 4.0 Manufacturing Systems
,”
Manuf. Lett.
,
20
, pp.
34
39
.
158.
Li
,
Z.
,
Wang
,
W. M.
,
Liu
,
G.
,
Liu
,
L.
,
He
,
J.
, and
Huang
,
G. Q.
,
2018
, “
Toward Open Manufacturing a Cross-Enterprises Knowledge and Services Exchange Framework Based on Blockchain and Edge Computing
,”
Ind. Manage. Data Syst.
,
118
(
1
), pp.
303
320
.
159.
Veena
,
P
,
Panikkar
S.
,
Nair
S.
,
Brody
P.
2015
, “
Empowering the Edge-Practical Insights on a Decentralized Internet of Things
,”
IBM Inst. Bus. Value
,
17
.
160.
Huckle
,
S.
,
Bhattacharya
,
R.
,
White
,
M.
, and
Beloff
,
N.
,
2016
, “
Internet of Things, Blockchain and Shared Economy Applications
,”
Procedia Comput. Sci.
,
58
, pp.
461
466
.
161.
Mohanta
,
B. K.
,
Panda
,
S. S.
, and
Jena
,
D.
,
2018
, “
An Overview of Smart Contract and Use Cases in Blockchain Technology
,”
2018 9th International Conference on Computing Communication and Networking Technologies (ICCCNT) 2018
,
IISc, Bengaluru, India
,
July 10–12
, pp.
1
4
.
162.
Bandyopadhyay
,
S.
,
Sengupta
,
M.
,
Maiti
,
S.
, and
Dutta
,
S.
,
2011
, “
Role of Middleware for Internet of Things: A Study
,”
Int. J. Comput. Sci. Eng. Surv.
,
2
(
3
), pp.
94
105
.
163.
Lee
,
I.
, and
Lee
,
K.
,
2015
, “
The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises
,”
Bus. Horiz.
,
58
(
4
), pp.
431
440
.
164.
Samaniego
,
M.
, and
Deters
,
R.
,
2017
, “
Hosting Virtual IoT Resources on Edge-Hosts with Blockchain
,”
IEEE International Conference on Computer and Information Technology
,
Fiji
, pp.
116
119
.
165.
Felser
,
M.
,
2005
, “
Real-time Ethernet—Industry Prospective
,”
Proc. IEEE.
,
93
(
6
), pp.
1118
1129
.
166.
Danielis
,
P.
,
Skodzik
,
J.
,
Altmann
,
V.
,
Schweissguth
,
E. B.
,
Golatowski
,
F.
,
Timmermann
,
D.
, and
Schacht
,
J.
,
2014
, “
Survey on Real-Time Communication via Ethernet in Industrial Automation Environments
,”
19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014
,
Barcelona, Spain
,
Sept. 16–19
, pp.
1
8
.
167.
Ruan
,
Q.
,
Xu
,
W.
, and
Wang
,
G.
,
2011
, “
RFID and ZigBee Based Manufacturing Monitoring System
,”
2011 International Conference on Electric Information and Control Engineering (ICEICE) 2011—Proceedings
,
Wuhan, China
, pp.
1672
1675
.
168.
Ashok Somani
,
N.
,
2012
, “
Zigbee: A Low Power Wireless Technology for Industrial Applications
,”
Int. J. Control Theory Comput. Model.
,
2
(
3
), pp.
27
33
.
169.
Prytz
,
G.
,
2008
, “
A Performance Analysis of EtherCAT and PROFINET IRT
,”
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA
,
Hamburg, Germany
, pp.
408
415
.
170.
Rostan
,
M.
,
Stubbs
,
J. E.
, and
Dzilno
,
D.
,
2010
, “
EtherCAT Enabled Advanced Control Architecture
,”
ASMC (Advanced Semiconductor Manufactutring Conference Proceedings)
,
San Francisco, CA
, pp.
39
44
.
171.
Edrington
,
B.
,
Zhao
,
B.
,
Hansel
,
A.
,
Mori
,
M.
, and
Fujishima
,
M.
,
2014
, “
Machine Monitoring System Based on MTConnect Technology
,”
Procedia CIRP.
,
22
, pp.
92
97
.
172.
Çenesİz
,
N.
, and
Esin
,
M.
,
2004
, “
Controller Area Network (CAN) for Computer Integrated Manufacturing Systems
,”
J. Intell. Manuf.
,
15
(
4
), pp.
481
489
.
173.
Kriesch
,
A.
,
Wen
,
J.
,
Ploss
,
D.
,
Banzer
,
P.
, and
Peschel
,
U.
, “
Probing Nanoplasmonic Waveguides and Couplers with Optical Antennas
,”
European Quantum Electronics Conference
,
Munich Germany
,
May 22–26
, p.
39
.
174.
Lee
,
S.
,
Lee
,
S.
,
Yoo
,
H.
,
Kwon
,
S.
, and
Shon
,
T.
,
2018
, “
Design and Implementation of Cybersecurity Testbed for Industrial IoT Systems
,”
J. Supercomput.
,
74
(
9
), pp.
4506
4520
.
175.
CHEN
,
K.
, and
ZHENG
,
W.-M.
,
2010
, “
Cloud Computing: System Instances and Current Research
,”
J. Softw.
,
20
(
5
), pp.
1337
1348
.
176.
Grgić
,
K.
,
Špeh
,
I.
, and
Hedi
,
I.
,
2016
, “
A web-Based IoT Solution for Monitoring Data Using MQTT Protocol
,”
Proceedings of 2016 International Conference on Smart Systems and Technologies, SST 2016.
, pp.
249
253
.
177.
Ferrer
,
B. R.
,
Mohammed
,
W. M.
,
Chen
,
E.
, and
Lastra
,
J. L. M.
,
2017
, “
Connecting Web-Based IoT Devices to a Cloud-Based Manufacturing Platform
,”
Proc. IECON 2017—43rd Annual Conference on IEEE Industrial Electronics Society
,
Beijing, China
,
Jan.
, pp.
8628
8633
.
178.
Kjellsson
,
J.
,
Vallestad
,
A. E.
,
Steigmann
,
R.
, and
Dzung
,
D.
,
2009
, “
Integration of a Wireless I/O Interface for PROFIBUS and PROFINET for Factory Automation
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
4279
4287
.
179.
Schneider
,
K.
,
2003
, “
Intelligent Field Devices in Factory Automation—Modular Structures Into Manufacturing Cells
,”
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Lisbon, Portugal
, vol.
1
, pp.
101
103
.
180.
Zhang
,
Y.
,
Ren
,
S.
,
Liu
,
Y.
, and
Si
,
S.
,
2017
, “
A big Data Analytics Architecture for Cleaner Manufacturing and Maintenance Processes of Complex Products
,”
J. Cleaner Prod.
,
142
, pp.
626
641
.
181.
Chen
,
C. P.
, and
Zhang
,
C. Y.
,
2014
, “
Data-Intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data
,”
Infor. Sci.
,
275
, pp.
314
347
.
182.
Jabbour
,
C. J. C.
,
de Sousa Jabbour
,
A. B. L.
,
Sarkis
,
J.
, and
Godinho Filho
,
M.
,
2019
, “
Unlocking the Circular Economy Through New Business Models Based on Large-Scale Data: An Integrative Framework and Research Agenda
,”
Technological Forecast. Soc. Change
,
144
, pp.
564
552
.
183.
Mayer-schönberger
,
B. V.
, and
Cukier
,
K.
,
2014
, “
Big Data : A Revolution That Will Transform How We Live, Work, and Think
,”
179
, pp.
1143
1144
.
184.
Jani
,
K.
,
2016
,
The Promise and Prejudice of Big Data in Intelligence Community, arXiv:1610.08629
.
185.
Garber
,
L.
,
2012
, “
Using In-Memory Analytics to Quickly Crunch Big Data
,”
Computer (Long. Beach. Calif)
,
45
, pp.
16
18
.
186.
McNaughton
,
L.
, and
Neuroscience
,
C.
,
1987
, “
Hippocampal Synaptic Enhancement and Information Storage Within a Distributed Memory System
,”
Trends Neurosci.
,
10
, pp.
408
415
.
187.
Zaharia
,
M.
,
Chowdhury
,
M.
,
Das
,
T.
,
Dave
,
A.
,
Ma
,
J.
,
Mccauley
,
M.
,
Franklin
,
M. J.
,
Shenker
,
S.
, and
Stoica
,
I.
,
2012
, “
Resilient Distributed Datasets : A Fault-Tolerant Abstraction for In-Memory Cluster Computing
,”
NSDI'12: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
,
San Jose, CA
,
Apr. 25–27
, pp.
15
28
.
188.
Khan
,
B. K.
,
Syal
,
R.
, and
Kapila
,
A.
,
2004
,
Introduction to Voice-over IP Technology
,
Information Systems Audit and Control Association
, pp.
1
11
.
189.
Schroeck
,
M.
,
Shockley
,
R.
,
Smart
,
J.
,
Romero-Morales
,
D.
, and
Tufano
,
P.
,
2012
, Analytics: The Real-World Use of Big Data. https://www.bdvc.nl/images/Rapporten/GBE03519USEN.PDF
190.
Kaisler
,
S.
,
Armour
,
F.
,
Espinosa
,
J. A.
, and
Money
,
W.
,
2013
, “
Big Data : Issues and Challenges Moving Forward
,”
2013 46th Hawaii International Conference on System Sciences
,
NW Washington, DC
, pp.
995
1004
.
191.
Katal
,
A.
,
Wazid
,
M.
, and
Goudar
,
R. H.
,
2013
, “
Big Data: Issues, Challenges, Tools and Good Practices
,”
2013 Sixth International Conference on Contemporary Computing
,
Noida, India
,
Aug. 8–10
, pp.
404
409
.
192.
Nagorny
,
K.
,
Lima-Monteiro
,
P.
,
Barata
,
J.
, and
Colombo
,
A. W.
,
2013
, “
Big Data Analysis in Smart Manufacturing: A Review
,”
Int. J. Comm., Network Sys. Sci.
,
10
(
3
), pp.
31
58
.
193.
Chen
,
C. L. P.
, and
Zhang
,
C.
,
2014
, “
Data-intensive Applications, Challenges, Techniques and Technologies : A Survey on Big Data
,”
Inf. Sci. (NY)
,
275
, pp.
314
347
.
195.
Zhang
,
Q.
,
Cheng
,
L.
, and
Boutaba
,
R.
,
2010
, “
Cloud Computing: State-of-the-art and Research Challenges
,”
J. Internet Serv. Appl.
,
1
, pp.
7
18
.
196.
Ibrahim
,
S.
,
He
,
B.
, and
Jin
,
H.
,
2011
, “
Towards Pay-As-You-Consume Cloud Computing
,”
2011 IEEE International Conference on Services Computing
,
Washington, DC
, IEEE, pp.
370
377
.
197.
Al-roomi
,
M.
,
Al-ebrahim
,
S.
,
Buqrais
,
S.
, and
Ahmad
,
I.
,
2013
, “
Cloud Computing Pricing Models: A Survey
,”
Int. J. Grid Distrib. Comput.
,
6
(
5
), pp.
93
106
.
198.
Fox
,
A.
,
Joseph
,
A. D.
, and
Katz
,
R. H.
,
2009
,
Above the Couds: A Berkeley View of Cloud Computing, Department of Electrical Engineering and Computing Sciences, University of California, Berkeley, CA, Rep. UCB/EECS, 28(13)
.
199.
Leavitt
,
N.
,
2009
, “
Is Cloud Computing Really Ready for Prime Time?
,”
Computer
,
1
, pp.
15
20
.
200.
Wang
,
L.
,
Von Laszewski
,
G.
,
Younge
,
A.
,
He
,
X.
, and
Wang
,
L.
,
2010
, “
Cloud Computing: A Perspective Study
,”
28
, pp.
137
146
.
201.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
, pp.
75
86
.
202.
Tao
,
F.
,
Zhang
,
L.
,
Venkatesh
,
V. C.
,
Luo
,
Y.
, and
Cheng
,
Y.
,
2011
, “
Cloud Manufacturing: A Computing and Service-Oriented Manufacturing Model
,”
225
, pp.
1969
1976
.
203.
Adamson
,
G.
,
Wang
,
L.
,
Holm
,
M.
, and
Moore
,
P.
,
2017
, “
Cloud Manufacturing—A Critical Review of Recent Development and Future Trends
,”
Int. J. Comput. Integr. Manuf.
,
30
, pp.
347
380
.
204.
Wang
,
J.
,
Zhang
,
L.
,
Duan
,
L.
, and
Gao
,
R. X.
,
2017
, “
A New Paradigm of Cloud-Based Predictive Maintenance for Intelligent Manufacturing
,”
J. Intell. Manuf.
,
28
(
5
), pp.
1125
1137
.
205.
Schmidt
,
B.
, and
Wang
,
L.
,
2018
, “
Cloud-Enhanced Predictive Maintenance
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1–4
), pp.
5
13
.
206.
Foster
,
I.
,
Zhao
,
Y.
,
Raicu
,
I.
, and
Lu
,
S.
, “
Cloud Computing and Grid Computing 360-degree Compared
,”
Grid Computing Environments Workshop, GCE
,
Austin, TX
,
Nov. 16
.
207.
Bonomi
,
F.
,
Milito
,
R.
,
Zhu
,
J.
, and
Addepalli
,
S.
,
2012
, “
Fog Computing and Its Role in the Internet of Things
,”
SIGCOMM '12: ACM SIGCOMM 2012 Conference
,
Helsinki, Finland
,
Aug. 2012
, pp.
2
5
.
208.
Church
,
K.
,
Greenberg
,
A.
, and
Hamilton
,
J.
,
2008
,
On Delivering Embarrassingly Distributed Cloud Services
,
HotNets
, pp.
55
60
.
209.
Valancius
,
V.
,
Laoutaris
,
N.
,
Massoulié
,
L.
,
Diot
,
C.
, and
Rodriguez
,
P.
,
2009
, “
Greening the Internet with Nano Data Centers
,”
Co-NEXT '09: Conference on Emerging Networking EXperiments and Technologies
,
Rome, Italy
,
Dec.
, pp.
37
48
.
210.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manufacturing Lett.
,
3
, pp.
18
23
.
211.
Islam
,
S.
, and
Grégoire,
,
J. C.
,
2010
, “
Network Edge Intelligence for the Emerging Next-Generation Internet
,”
Future Internet
,
2
(
4
), pp.
603
623
.
212.
Stojmenovic
,
I.
,
2014
, “
The Fog Computing Paradigm : Scenarios and Security Issues
,”
2
, pp.
1
8
.
213.
Yi
,
S.
,
Li
,
C.
, and
Li
,
Q.
,
2015
, “
A Survey of Fog Computing : Concepts, Applications, and Issues A Survey of Fog Computing: Concepts
,”
The Sixteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing
,
Hangzhou, China
,
June
.
214.
Baccarelli
,
E.
,
Naranjo
,
P. G. V.
,
Scarpiniti
,
M.
,
Shojafar
,
M.
, and
Abawajy
,
J. H.
,
2017
, “
Fog of Everything: Energy-Efficient Networked Computing Architectures, Research Challenges, and a Case Study
,”
IEEE Access
,
5
, pp.
9882
9910
.
215.
Gao
,
R. X.
,
Wu
,
D.
,
Liu
,
S.
,
Zhang
,
L.
,
Terpenny
,
J.
, and
Gao
,
R. X.
,
2017
, “
A Fog Computing-Based Framework for Process Monitoring and Prognosis in Cyber-Manufacturing
,”
J. Manuf. Syst.
,
43
, pp.
25
34
.
216.
Bagheri
,
B.
,
Yang
,
S.
,
Kao
,
H.-A.
, and
Lee
,
J.
,
2015
, “
Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment
,”
IFAC-PapersOnLine.
,
48
(
3
), pp.
1622
1627
.
217.
Alrawais
,
A.
,
Alhothaily
,
A.
,
Hu
,
C.
, and
Cheng
,
X.
,
2017
, “
Fog Computing for the Internet of Things: Security and Privacy Issues
,”
IEEE Internet Computing
,
21
(
2
), pp.
34
42
.
218.
Yi
,
S.
,
Qin
,
Z.
, and
Li
,
Q.
,
2015
, “
Security and privacy issues of fog computing: A survey
,”
10th International Conference on Wireless Algorithms, Systems, and Applications
,
Qufu, China
,
Aug. 10–12
, pp.
1
10
.
219.
Mukherjee
,
M.
,
Matam
,
R.
,
Shu
,
L.
,
Maglaras
,
L.
,
Ferrag
,
M. A.
,
Choudhury
,
N.
, and
Kumar
,
V.
,
2017
, “
Security and Privacy in Fog Computing: Challenges
,”
IEEE Access
,
5
, pp.
19293
19304
.
220.
Wang
,
L.
,
Törngren
,
M.
, and
Onori
,
M.
,
2015
, “
Current Status and Advancement of Cyber-Physical Systems in Manufacturing
,”
J. Manuf. Syst.
,
37
, pp.
517
527
.
221.
Babiceanu
,
R. F.
, and
Seker
,
R.
,
2016
, “
Big Data and Virtualization for Manufacturing Cyber-Physical Systems: A Survey of the Current Status and Future Outlook
,”
Comput. Ind.
,
81
, pp.
128
137
.
222.
Monostori
,
L.
,
Kádá
,
B.
,
Bauernhansl
,
T.
,
Kondoh
,
S.
,
Kumara
,
S.
,
Reinhart
,
G.
,
Sauer
,
O.
,
Schuh
,
G.
, and
Sihn
,
W.
,
2016
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP Ann.
,
65
(
2
),
621
641
.
223.
NIST
,
2013
,
National Institute of Standards and Technology, Workshop Report on Foundations for Innovation in Cyber-Physical Systems, January 2013
.
224.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.
,
2014
, “
A Cyber-Physical Systems Architecture for Industry 4.0-based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
225.
Monostori
,
L.
,
2014
, “
Cyber-physical Production Systems : Roots, Expectations and R & D Challenges
,”
Procedia CIRP
,
17
, pp.
9
13
.
226.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.
,
2014
, “
Recent Advances and Trends of Cyber-Physical Systems and Big Data Analytics in Industrial Informatics
,”
Proceeding of International Conference on Industrial Informatics (INDIN)
,
Porto Alegre Rs Brazil
,
July 27–30
, pp.
1
6
.
227.
Schreiber
,
M.
,
Vernickel
,
K.
,
Richter
,
C.
,
Reinhart
,
G.
, and
A.
,
2019
, “
Integrated Production and Maintenance Planning in Cyber-Physical Production Systems
,”
Procedia CIRP
,
79
, pp.
534
539
.
228.
Lee
,
J.
,
Do Noh
,
S.
,
Kim
,
H.
, and
Kang
,
Y.
,
2018
, “
Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting
,”
Sensors
,
18
(
5
), p.
1428
.
229.
Tarallo
,
A.
,
Di
,
R. M. G.
, and
De Amicis
,
G. R.
,
2018
, “
A Cyber-Physical System for Production Monitoring of Manual Manufacturing Processes
,”
Int. J. Interact. Des. Manuf.
,
12
(
4
), pp.
1235
1241
.
230.
Lee
,
J.
,
2017
, “
Cyber Physical Systems for Predictive Production Systems
,”
Prod. Eng.
,
11
(
2
), pp.
155
165
.
231.
Westphall
,
C. B.
,
Mauri
,
J. L.
, and
Pochec
,
P.
,
2015
,
UBICOMM 2015: The Nnth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Nice, France
, pp.
64
69
.
232.
Jackson
,
K.
,
Efthymiou
,
K.
, and
Borton
,
J.
,
2016
, “
Digital Manufacturing and Flexible Assembly Technologies for Reconfigurable Aerospace Production Systems
,”
Procedia CIRP.
,
52
, pp.
274
279
.
233.
Hehenberger
,
P.
,
Vogel-heuser
,
B.
,
Bradley
,
D.
, and
Eynard
,
B.
,
2016
, “
Design, Modelling, Simulation and Integration of Cyber Physical Systems: Methods and Applications
,”
82
, pp.
273
289
.
234.
Walter
,
A.
,
Karnouskos
,
S.
, and
Leita
,
P.
,
2016
, “
Computers in Industry Industrial Automation Based on Cyber-Physical Systems Technologies: Prototype Implementations and Challenges
,”
81
, pp.
11
25
.
235.
Harrison
,
B. R.
,
Vera
,
D.
,
Ahmad
,
B.
, and
Ieee
,
M.
,
2016
, “
Engineering Methods and Tools for Cyber—Physical Automation Systems
,”
Proc. IEEE
,
104
(
5
), pp.
973
985
.
236.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
237.
Grieves
,
M.
,
2014
,
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication, White paper
, vol.
1
, pp.
1
7
.
238.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
, pp.
1
14
.
239.
Hochhalter
,
J. D.
,
Leser
,
W. P.
,
Newman
,
J. A.
,
Glaessgen
,
E. H.
,
Gupta
,
V. K.
,
Yamakov
,
V.
,
Cornell
,
S. R.
,
Willard
,
S. A.
, and
Heber
,
G.
,
2014
,
Coupling Damage-Sensing Particles to the Digitial Twin Concept. NASA/TM–2014-218257
.
240.
Reifsnider
,
K.
, and
Majumdar
,
P.
,
2013
, “
Multiphysics Stimulated Simulation Digital Twin Methods for Fleet Management
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, p.
1578
. 1–11.
241.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.
242.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
141
144
.
243.
Uhlemann
,
T. H. J.
,
Schock
,
C.
,
Lehmann
,
C.
,
Freiberger
,
S.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems
,”
Procedia Manuf.
,
9
, pp.
113
120
.
244.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.
245.
Negri
,
E.
,
Ardakani
,
H. D.
,
Cattaneo
,
L.
,
Singh
,
J.
,
Macchi
,
M.
, and
Lee
,
J.
,
2019
, “
A Digital Twin-Based Scheduling framework including Equipment Health Index and Genetic Algorithms
,”
13th IFAC Workshop on Intelligent Manufacturing Systems IMS 2019
,
Oshawa, Canada
,
Aug. 12–14
, pp.
43
48
.
246.
Energy, GE Renewable,
2016
, “
Digital Wind Farm: The Next Evolution of Wind Energy
,” pp.
1
5
.
247.
Gabor
,
T.
,
Belzner
,
L.
,
Kiermeier
,
M.
,
Beck
,
M. T.
, and
Neitz
,
A.
,
2016
, “
A Simulation-Based Architecture for Smart Cyber-Physical Systems
,”
Proceedings—2016 IEEE International Conference on Auton. Comput., ICAC 2016
,
Wuerzburg, Germany
, pp.
374
379
.
248.
Knapp
,
G. L.
,
Mukherjee
,
T.
,
Zuback
,
J. S.
,
Wei
,
H. L.
,
Palmer
,
T. A.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Building Blocks for a Digital Twin of Additive Manufacturing
,”
Acta Mater.
,
135
, pp.
390
399
.
249.
Schluse
,
M.
, and
Rossmann
,
J.
,
2016
, “
From Simulation to Experimentable Digital Twins: Simulation-Based Development and Operation of Complex Technical Systems
,”
ISSE 2016—2016 International Symposium on Systems Engineering—Proceedings Paper
,
Edinburgh, Scotland
, pp.
1
6
.
250.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.
251.
Zhou
,
G.
,
Zhang
,
C.
,
Li
,
Z.
,
Ding
,
K.
, and
Wang
,
C.
,
2020
, “
Knowledge-Driven Digital Twin Manufacturing Cell Towards Intelligent Manufacturing
,”
Int. J. Prod. Res.
,
58
(
4
), pp.
1034
1051
.
252.
Zhang
,
C.
,
Xu
,
W.
,
Liu
,
J.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2019
, “
A Reconfigurable Modeling Approach for Digital Twin-Based Manufacturing System
,”
Procedia CIRP.
,
83
, pp.
118
125
.
253.
Aivaliotis
,
P.
,
Georgoulias
,
K.
, and
Chryssolouris
,
G.
,
2019
, “
The Use of Digital Twin for Predictive Maintenance in Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
32
(
11
), pp.
1067
1080
.
254.
Werner
,
A.
,
Zimmermann
,
N.
, and
Lentes
,
J.
,
2020
, “
Approach for a Holistic Predictive Maintenance Strategy by Incorporating a Approach for a Holistic Predictive Maintenance Strategy by Incorporating a Digital Twin Digital Twin
,”
Procedia Manuf.
,
39
, pp.
1743
1751
.
255.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Robot. Comput. Integr. Manuf.
,
65
, p.
101974
.
256.
Armendia
,
M.
,
Cugnon
,
F.
,
Berglind
,
L.
,
Ozturk
,
E.
,
Gil
,
G.
, and
Selmi
,
J.
,
2019
, “
Evaluation of Machine Tool Digital Twin for Machining Operations in Industrial Environment
,”
Procedia CIRP
,
82
, pp.
231
236
.
257.
Booyse
,
W.
,
Wilke
,
D. N.
, and
Heyns
,
S.
,
2020
, “
Deep Digital Twins for Detection, Diagnostics and Prognostics
,”
Mech. Syst. Signal Process.
,
140
, p.
106612
.
258.
Lee
,
J.
,
Davari
,
H.
,
Singh
,
J.
, and
Pandhare
,
V.
,
2018
, “
Industrial Artificial Intelligence for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
18
, pp.
20
23
.
259.
Jay
,
L.
,
Jaskaran
,
S.
, and
Azamfar
,
M.
,
2019
,
Industrial AI:is it Manufacturing’s Guiding Light?, Manuf Leadersh Counc
., pp.
26
36
.
260.
Lee
,
J.
,
Azamfar
,
M.
,
Singh
,
J.
, and
Siahpour
,
S.
,
2020
, “
Integration of Digital Twin and Deep Learning in Cyber-Physical Systems: Towards Smart Manufacturing
,”
IET Collab. Intell. Manuf.
,
2
(
1
), pp.
34
36
.
261.
Lee
,
J.
,
2020
,
Industrial AI: Applications With Sustainable Performance
,
Springer Books
,
Springer Singapore
.
You do not currently have access to this content.