Abstract

Today’s manufacturing systems are becoming increasingly complex, dynamic, and connected. The factory operations face challenges of highly nonlinear and stochastic activity due to the countless uncertainties and interdependencies that exist. Recent developments in artificial intelligence (AI), especially Machine Learning (ML) have shown great potential to transform the manufacturing domain through advanced analytics tools for processing the vast amounts of manufacturing data generated, known as Big Data. The focus of this paper is threefold: (1) review the state-of-the-art applications of AI to representative manufacturing problems, (2) provide a systematic view for analyzing data and process dependencies at multiple levels that AI must comprehend, and (3) identify challenges and opportunities to not only further leverage AI for manufacturing, but also influence the future development of AI to better meet the needs of manufacturing. To satisfy these objectives, the paper adopts the hierarchical organization widely practiced in manufacturing plants in examining the interdependencies from the overall system level to the more detailed granular level of incoming material process streams. In doing so, the paper considers a wide range of topics from throughput and quality, supervisory control in human–robotic collaboration, process monitoring, diagnosis, and prognosis, finally to advances in materials engineering to achieve desired material property in process modeling and control.

References

1.
Monostori
,
L.
,
Kádár
,
B.
,
Bauernhansl
,
T.
,
Kondoh
,
S.
,
Kumara
,
S.
,
Reinhart
,
G.
,
Sauer
,
O.
,
Schuh
,
G.
,
Sihn
,
W.
, and
Ueda
,
K.
,
2016
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP Ann.
,
65
(
2
), pp.
621
641
. 10.1016/j.cirp.2016.06.005
2.
Wang
,
L.
,
2019
, “
From Intelligence Science to Intelligent Manufacturing
,”
Engineering
,
5
(
4
), pp.
615
618
. 10.1016/j.eng.2019.04.011
3.
Chui
,
L.
,
Kamalnath
,
V.
, and
McCarthy
,
B.
,
2018
,
An Executive's Guide to AI, McKinsey
, https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/an-executives-guide-to-ai.
4.
Cardon
,
D.
,
Cointet
,
J. P.
, and
Mazières
,
A.
,
2018
, “
Neurons Spike Back: The Invention of Inductive Machines and the Artificial Intelligence Controversy
,”
Reseaux
,
5
(
211
), pp.
173
220
.
5.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
. 10.1038/nature14539
6.
Lee
,
J.
,
Davari
,
H.
,
Singh
,
J.
, and
Pandhare
,
V.
,
2018
, “
Industrial Artificial Intelligence for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
18
, pp.
20
23
. 10.1016/j.mfglet.2018.09.002
7.
Li
,
B.
,
Hou
,
B.
,
Yu
,
W.
,
Lu
,
X.
, and
Yang
,
C.
,
2017
, “
Applications of Artificial Intelligence in Intelligent Manufacturing: A Review
,”
Front. Inf. Technol. Electron. Eng.
,
18
(
1
), pp.
86
96
. 10.1631/FITEE.1601885
8.
Zhong
,
R. Y.
,
Xu
,
X.
,
Klotz
,
E.
, and
Newman
,
S. T.
,
2017
, “
Intelligent Manufacturing in the Context of Industry 4.0: A Review
,”
Engineering
,
3
(
5
), pp.
616
630
. 10.1016/J.ENG.2017.05.015
9.
Sharp
,
M.
,
Ak
,
R.
, and
Hedberg
,
T.
,
2018
, “
A Survey of the Advancing Use and Development of Machine Learning in Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
170
179
. 10.1016/j.jmsy.2018.02.004
10.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
144
156
. 10.1016/j.jmsy.2018.01.003
11.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
. 10.1016/j.ymssp.2018.02.016
12.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
. 10.1016/j.ymssp.2018.05.050
13.
Wang
,
L.
,
Gao
,
R.
,
Váncza
,
J.
,
Krüger
,
J.
,
Wang
,
X. V.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2019
, “
Symbiotic Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
2
), pp.
701
726
. 10.1016/j.cirp.2019.05.002
14.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Supervisory Factory Control Based on Real-Time Production Feedback
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
653
660
. 10.1115/1.2673666
15.
Li
,
J.
, and
Meerkov
,
S. M.
,
2009
,
Production Systems Engineering
,
Springer
,
US
.
16.
Wu
,
K.
, and
McGinnis
,
L.
,
2012
, “
Performance Evaluation for General Queueing Networks in Manufacturing Systems: Characterizing the Trade-off Between Queue Time and Utilization
,”
Eur. J. Oper. Res.
,
221
(
2
), pp.
328
339
. 10.1016/j.ejor.2012.03.019
17.
Tan
,
B.
, and
Gershwin
,
S. B.
,
2009
, “
Analysis of a General Markovian Two-Stage Continuous-Flow Production System with a Finite Buffer
,”
Int. J. Prod. Econ.
,
120
(
2
), pp.
327
339
. 10.1016/j.ijpe.2008.05.022
18.
Gershwin
,
S. B.
, and
Werner
,
L. M.
,
2007
, “
An Approximate Analytical Method for Evaluating the Performance of Closed-Loop Flow Systems With Unreliable Machines and Finite Buffers
,”
Int. J. Prod. Res.
,
45
(
14
), pp.
3085
3111
. 10.1080/00207540500385980
19.
Negahban
,
A.
, and
Smith
,
J. S.
,
2014
, “
Simulation for Manufacturing System Design and Operation: Literature Review and Analysis
,”
J. Manuf. Syst.
,
33
(
2
), pp.
241
261
. 10.1016/j.jmsy.2013.12.007
20.
Colledani
,
M.
, and
Gershwin
,
S. B.
,
2013
, “
A Decomposition Method for Approximate Evaluation of Continuous Flow Multi-Stage Lines With General Markovian Machines
,”
Ann. Oper. Res.
,
209
(
1
), pp.
5
40
. 10.1007/s10479-011-0961-9
21.
Liu
,
Y.
,
Li
,
J.
, and
Chiang
,
S. Y.
,
2012
, “
Re-Entrant Lines with Unreliable Asynchronous Machines and Finite Buffers: Performance Approximation and Bottleneck Identification
,”
Int. J. Prod. Res.
,
50
(
4
), pp.
977
990
. 10.1080/00207543.2010.550639
22.
Li
,
C.
,
Wang
,
H.
, and
Li
,
B.
,
2016
, “
Performance Prediction of a Production Line with Variability Based on Grey Model Artificial Neural Network
,”
Chinese Control Conference, CCC
, pp.
9582
9587
.
23.
Yang
,
F.
,
2010
, “
Neural Network Metamodeling for Cycle Time-Throughput Profiles in Manufacturing
,”
Eur. J. Oper. Res.
,
205
(
1
), pp.
172
185
. 10.1016/j.ejor.2009.12.026
24.
Huang
,
J.
,
Chang
,
Q.
,
Zou
,
J.
, and
Arinez
,
J.
,
2018
, “
A Real-Time Maintenance Policy for Multi-Stage Manufacturing Systems Considering Imperfect Maintenance Effects
,”
IEEE Access
,
6
, pp.
62174
62183
. 10.1109/ACCESS.2018.2876024
25.
Zou
,
J.
,
Chang
,
Q.
,
Arinez
,
J.
, and
Xiao
,
G.
,
2017
, “
Data-Driven Modeling and Real-Time Distributed Control for Energy Efficient Manufacturing Systems
,”
Energy
,
127
, pp.
247
257
. 10.1016/j.energy.2017.03.123
26.
Li
,
Y.
,
Chang
,
Q.
,
Biller
,
S.
, and
Xiao
,
G.
,
2014
, “
Event-Based Modelling of Distributed Sensor Networks in Battery Manufacturing
,”
Int. J. Prod. Res.
,
52
(
14
), pp.
4239
4252
. 10.1080/00207543.2013.874606
27.
Zou
,
J.
,
Chang
,
Q.
,
Lei
,
Y.
, and
Arinez
,
J.
,
2018
, “
Production System Performance Identification Using Sensor Data
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
48
(
2
), pp.
255
264
. 10.1109/TSMC.2016.2597062
28.
Zou
,
J.
,
Chang
,
Q.
,
Arinez
,
J.
, and
Xiao
,
G.
,
2018
, “
Production Performance Prognostics Through Model-Based Analytical Method and Recency-Weighted Stochastic Approximation Method
,”
J. Manuf. Syst.
,
47
, pp.
107
114
. 10.1016/j.jmsy.2018.04.017
29.
Shi
,
J.
, and
Zhou
,
S.
,
2009
, “
Quality Control and Improvement for Multistage Systems: A Survey
,”
IIE Trans. (Inst. Ind. Eng).
,
41
(
9
), pp.
744
753
. 10.1080/07408170902966344
30.
Carbery
,
C. M.
,
Woods
,
R.
, and
Marshall
,
A. H.
,
2018
, “
A Bayesian Network Based Learning System for Modelling Faults in Large-Scale Manufacturing
,”
Proceedings of the IEEE International Conference on Industrial Technology
,
Lyon, France
, pp.
1357
1362
.
31.
Carbery
,
C. M.
,
Woods
,
R.
, and
Marshall
,
A. H.
,
2019
, “
A New Data Analytics Framework Emphasising Preprocessing of Data to Generate Insights Into Complex Manufacturing Systems
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
19–20
), pp.
6713
6726
. 10.1177/0954406219866867
32.
Peres
,
R. S.
,
Barata
,
J.
,
Leitao
,
P.
, and
Garcia
,
G.
,
2019
, “
Multistage Quality Control Using Machine Learning in the Automotive Industry
,”
IEEE Access
,
7
, pp.
79908
79916
. 10.1109/ACCESS.2019.2923405
33.
Lieber
,
D.
,
Stolpe
,
M.
,
Konrad
,
B.
,
Deuse
,
J.
, and
Morik
,
K.
,
2013
, “
Quality Prediction in Interlinked Manufacturing Processes Based on Supervised & Unsupervised Machine Learning
,”
Proc. CIRP
,
7
, pp.
193
198
. 10.1016/j.procir.2013.05.033
34.
Wang
,
G.
,
Ledwoch
,
A.
,
Hasani
,
R. M.
,
Grosu
,
R.
, and
Brintrup
,
A.
,
2019
, “
A Generative Neural Network Model for the Quality Prediction of Work in Progress Products
,”
Appl. Soft Comput. J.
,
85
, p.
105683
. 10.1016/j.asoc.2019.105683
35.
Wuest
,
T.
,
Irgens
,
C.
, and
Thoben
,
K. D.
,
2014
, “
An Approach to Monitoring Quality in Manufacturing Using Supervised Machine Learning on Product State Data
,”
J. Intell. Manuf.
,
25
(
5
), pp.
1167
1180
. 10.1007/s10845-013-0761-y
36.
Liu
,
Y.
, and
Jin
,
S.
,
2013
, “
Application of Bayesian Networks for Diagnostics in the Assembly Process by Considering Small Measurement Data Sets
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1229
1237
. 10.1007/s00170-012-4252-7
37.
Sayed
,
M. S.
, and
Lohse
,
N.
,
2013
, “
Distributed Bayesian Diagnosis for Modular Assembly Systems—A Case Study
,”
J. Manuf. Syst.
,
32
(
3
), pp.
480
488
. 10.1016/j.jmsy.2013.03.001
38.
Leitao
,
P.
,
2009
, “
Agent-Based Distributed Manufacturing Control: A State-of-the-Art Survey
,”
Eng. Appl. Artif. Intell.
,
22
(
7
), pp.
979
991
. 10.1016/j.engappai.2008.09.005
39.
Shen
,
W.
,
Wang
,
L.
, and
Hao
,
Q.
,
2006
, “
Agent-Based Distributed Manufacturing Process Planning and Scheduling: A State-of-the-Art Survey
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
36
(
4
), pp.
563
577
. 10.1109/TSMCC.2006.874022
40.
Wang
,
S.
,
Wan
,
J.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Implementing Smart Factory of Industrie 4.0: An Outlook
,”
Int. J. Distrib. Sens. Networks
,
12
(
1
), p.
3159805
. 10.1155/2016/3159805
41.
Priore
,
P.
,
Ponte
,
B.
,
Puente
,
J.
, and
Gómez
,
A.
,
2018
, “
Learning-Based Scheduling of Flexible Manufacturing Systems Using Ensemble Methods
,”
Comput. Ind. Eng.
,
126
, pp.
282
291
. 10.1016/j.cie.2018.09.034
42.
Rajendran
,
C.
, and
Holthaus
,
O.
,
1999
, “
Comparative Study of Dispatching Rules in Dynamic Flowshops and Jobshops
,”
Eur. J. Oper. Res.
,
116
(
1
), pp.
156
170
. 10.1016/S0377-2217(98)00023-X
43.
Shahzad
,
A.
, and
Mebarki
,
N.
,
2012
, “
Data Mining Based Job Dispatching Using Hybrid Simulation-Optimization Approach for Shop Scheduling Problem
,”
Eng. Appl. Artif. Intell.
,
25
(
6
), pp.
1173
1181
. 10.1016/j.engappai.2012.04.001
44.
Doh
,
H. H.
,
Yu
,
J. M.
,
Kwon
,
Y. J.
,
Shin
,
J. H.
,
Kim
,
H. W.
,
Nam
,
S. H.
, and
Lee
,
D. H.
,
2014
, “
Decision Tree Based Scheduling for Flexible job Shops with Multiple Process Plans
,”
Int. J. Mech. Aero. Ind. Mechatronic Manuf. Eng.
,
8
(
3
), pp.
621
627
.
45.
Ji
,
W.
, and
Wang
,
L.
,
2017
, “
Big Data Analytics Based Fault Prediction for Shop Floor Scheduling
,”
J. Manuf. Syst.
,
43
(
Part 1
), pp.
187
194
. 10.1016/j.jmsy.2017.03.008
46.
El-Bouri
,
A.
, and
Shah
,
P.
,
2006
, “
A Neural Network for Dispatching Rule Selection in a Job Shop
,”
Int. J. Adv. Manuf. Technol.
,
31
(
3–4
), pp.
342
349
. 10.1007/s00170-005-0190-y
47.
Azadeh
,
A.
,
Jeihoonian
,
M.
,
Shoja
,
B. M.
, and
Seyedmahmoudi
,
S. H.
,
2012
, “
An Integrated Neural Network-Simulation Algorithm for Performance Optimisation of the Bi-Criteria Two-Stage Assembly Flow-Shop Scheduling Problem with Stochastic Activities
,”
Int. J. Prod. Res.
,
50
(
24
), pp.
7271
7284
. 10.1080/00207543.2011.645511
48.
Hammami
,
Z.
,
Mouelhi
,
W.
, and
Said
,
L. B.
,
2015
, “
A Self Adaptive Neural Agent Based Decision Support System for Solving Dynamic Real Time Scheduling Problems
,”
Proceedings of the 10th International Conference on Intelligence System Knowledge Engineering, ISKE 2015
,
Taipei
, pp.
494
501
.
49.
Liu
,
Y. H.
,
Huang
,
H. P.
, and
Lin
,
Y. S.
,
2005
, “
Dynamic Scheduling of Flexible Manufacturing System Using Support Vector Machines
,”
Proceedings of the IEEE Conference on Automation Science and Engineering
,
Edmonton, Alta, Canada
, pp.
387
392
.
50.
Shiue
,
Y. R.
,
2009
, “
Data-Mining-Based Dynamic Dispatching Rule Selection Mechanism for Shop Floor Control Systems Using a Support Vector Machine Approach
,”
Int. J. Prod. Res.
,
47
(
13
), pp.
3669
3690
. 10.1080/00207540701846236
51.
Gabel
,
T.
, and
Riedmiller
,
M.
,
2012
, “
Distributed Policy Search Reinforcement Learning for Job-Shop Scheduling Tasks
,”
Int. J. Prod. Res.
,
50
(
1
), pp.
41
61
. 10.1080/00207543.2011.571443
52.
Palombarini
,
J.
, and
Martínez
,
E.
,
2012
, “
SmartGantt—An Intelligent System for Real Time Rescheduling Based on Relational Reinforcement Learning
,”
Expert Syst. Appl.
,
39
(
11
), pp.
10251
10268
. 10.1016/j.eswa.2012.02.176
53.
Shahrabi
,
J.
,
Adibi
,
M. A.
, and
Mahootchi
,
M.
,
2017
, “
A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop Scheduling
,”
Comput. Ind. Eng.
,
110
, pp.
75
82
. 10.1016/j.cie.2017.05.026
54.
Waschneck
,
B.
,
Reichstaller
,
A.
,
Belzner
,
L.
,
Altenmüller
,
T.
,
Bauernhansl
,
T.
,
Knapp
,
A.
, and
Kyek
,
A.
,
2018
, “
Optimization of Global Production Scheduling with Deep Reinforcement Learning
,”
Proc. CIRP
,
72
, pp.
1264
1269
. 10.1016/j.procir.2018.03.212
55.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
,
Riedmiller
,
M.
,
Fidjeland
,
A. K.
,
Ostrovski
,
G.
,
Petersen
,
S.
,
Beattie
,
C.
,
Sadik
,
A.
,
Antonoglou
,
I.
,
King
,
H.
,
Kumaran
,
D.
,
Wierstra
,
D.
,
Legg
,
S.
, and
Hassabis
,
D.
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
. 10.1038/nature14236
56.
Huang
,
J.
,
Chang
,
Q.
, and
Chakraborty
,
N.
,
2019
, “
Machine Preventive Replacement Policy for Serial Production Lines Based on Reinforcement Learning
,”
Proceedings of the IEEE Conference on Automation Science and Engineering
,
Vancouver, BC, Canada
, pp.
523
528
.
57.
Aissani
,
N.
,
Beldjilali
,
B.
, and
Trentesaux
,
D.
,
2009
, “
Dynamic Scheduling of Maintenance Tasks in the Petroleum Industry: A Reinforcement Approach
,”
Eng. Appl. Artif. Intell.
,
22
(
7
), pp.
1089
1103
. 10.1016/j.engappai.2009.01.014
58.
Wang
,
X.
,
Wang
,
H.
, and
Qi
,
C.
,
2016
, “
Multi-Agent Reinforcement Learning Based Maintenance Policy for a Resource Constrained Flow Line System
,”
J. Intell. Manuf.
,
27
(
2
), pp.
325
333
. 10.1007/s10845-013-0864-5
59.
Xanthopoulos
,
A. S.
,
Kiatipis
,
A.
,
Koulouriotis
,
D. E.
, and
Stieger
,
S.
,
2017
, “
Reinforcement Learning-Based and Parametric Production-Maintenance Control Policies for a Deteriorating Manufacturing System
,”
IEEE Access
,
6
, pp.
576
588
. 10.1109/ACCESS.2017.2771827
60.
Kuhnle
,
A.
,
Jakubik
,
J.
, and
Lanza
,
G.
,
2019
, “
Reinforcement Learning for Opportunistic Maintenance Optimization
,”
Prod. Eng.
,
13
(
1
), pp.
33
41
. 10.1007/s11740-018-0855-7
61.
Wang
,
H.
,
2002
, “
A Survey of Maintenance Policies of Deteriorating Systems
,”
Eur. J. Oper. Res.
,
139
(
3
), pp.
469
489
. 10.1016/S0377-2217(01)00197-7
62.
Kumar
,
A.
,
Shankar
,
R.
, and
Thakur
,
L. S.
,
2018
, “
A Big Data Driven Sustainable Manufacturing Framework for Condition-Based Maintenance Prediction
,”
J. Comput. Sci.
,
27
, pp.
428
439
. 10.1016/j.jocs.2017.06.006
63.
Demir
,
L.
,
Tunali
,
S.
, and
Eliiyi
,
D. T.
,
2014
, “
The State of the Art on Buffer Allocation Problem: A Comprehensive Survey
,”
J. Intell. Manuf.
,
25
(
3
), pp.
371
392
. 10.1007/s10845-012-0687-9
64.
Tsadiras
,
A. K.
,
Papadopoulos
,
C. T.
, and
O’Kelly
,
M. E. J.
,
2013
, “
An Artificial Neural Network Based Decision Support System for Solving the Buffer Allocation Problem in Reliable Production Lines
,”
Comput. Ind. Eng.
,
66
(
4
), pp.
1150
1162
. 10.1016/j.cie.2013.07.024
65.
Chen
,
C.
,
Xia
,
B.
,
Zhou
,
B. H.
, and
Xi
,
L.
,
2015
, “
A Reinforcement Learning Based Approach for a Multiple-Load Carrier Scheduling Problem
,”
J. Intell. Manuf.
,
26
(
6
), pp.
1233
1245
. 10.1007/s10845-013-0852-9
66.
Ou
,
X.
,
Chang
,
Q.
,
Arinez
,
J.
, and
Zou
,
J.
,
2018
, “
Gantry Work Cell Scheduling Through Reinforcement Learning with Knowledge-Guided Reward Setting
,”
IEEE Access
,
6
, pp.
14699
14709
. 10.1109/ACCESS.2018.2800641
67.
Ou
,
X.
,
Chang
,
Q.
, and
Chakraborty
,
N.
,
2019
, “
Simulation Study on Reward Function of Reinforcement Learning in Gantry Work Cell Scheduling
,”
J. Manuf. Syst.
,
50
, pp.
1
8
. 10.1016/j.jmsy.2018.11.005
68.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K. D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
. 10.1080/21693277.2016.1192517
69.
Green
,
S. A.
,
Billinghurst
,
M.
,
Chen
,
X.
, and
Chase
,
J. G.
,
2008
, “
Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design
,”
Int. J. Adv. Robot. Syst.
,
5
(
1
), pp.
1
18
. 10.5772/5664
70.
Verma
,
A.
, and
Kumar
,
S.
,
2018
, “
Cognitive Robotics in Artificial Intelligence
,”
Proceedings of the International Conference on Cloud Computing, Data Science and Engineering
,
Noida, India
, pp.
65
70
.
71.
Duan
,
F.
,
Tan
,
J. T. C.
, and
Arai
,
T.
,
2011
, “
A New Human-Robot Collaboration Assembly System for Cellular Manufacturing
,”
Proceedings of the Chinese Control Conference
,
Yantai, China
, pp.
5468
5473
.
72.
Marvel
,
J. A.
,
Falco
,
J.
, and
Marstio
,
I.
,
2015
, “
Characterizing Task-Based Human-Robot Collaboration Safety in Manufacturing
,”
IEEE Trans. Syst. Man, Cybern. Syst.
,
45
(
2
), pp.
260
275
. 10.1109/TSMC.2014.2337275
73.
Robla-Gomez
,
S.
,
Becerra
,
V. M.
,
Llata
,
J. R.
,
Gonzalez-Sarabia
,
E.
,
Torre-Ferrero
,
C.
, and
Perez-Oria
,
J.
,
2017
, “
Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments
,”
IEEE Access
,
5
, pp.
26754
26773
. 10.1109/ACCESS.2017.2773127
74.
Nikolaidis
,
S.
,
Lasota
,
P.
,
Rossano
,
G.
,
Martinez
,
C.
,
Fuhlbrigge
,
T.
, and
Shah
,
J.
,
2013
, “
Human-Robot Collaboration in Manufacturing: Quantitative Evaluation of Predictable, Convergent Joint Action
,”
International Symposium on Robotics, ISR 2013
,
Seoul, South Korea
.
75.
Helms
,
E.
,
Sehraft
,
R. D.
, and
Hägele
,
M.
,
2002
, “
Rob@Work: Robot Assistant in Industrial Environments
,”
Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication
,
Berlin, Germany
, pp.
399
404
.
76.
Wang
,
X. V.
,
Seira
,
A.
, and
Wang
,
L.
,
2018
, “
Classification, Personalised Safety Framework and Strategy for Human-Robot Collaboration
,”
Proceedings of the International Conference on Computers and Industrial Engineering.
,
Auckland, New Zealand
.
77.
Sheridan
,
T. B.
,
1992
,
Telerobotics, Automation, and Human Supervisory Control
,
MIT Press
,
Cambridge, MA
.
78.
Sheridan
,
T. B.
,
2016
, “
Human-Robot Interaction
,”
Hum. Factors
,
58
(
4
), pp.
525
532
. 10.1177/0018720816644364
79.
Rahman
,
S. M. M.
,
Liao
,
Z.
,
Jiang
,
L.
, and
Wang
,
Y.
,
2016
, “
A Regret-Based Autonomy Allocation Scheme for Human-Robot Shared Vision Systems in Collaborative Assembly in Manufacturing
,”
IEEE International Conference on Automation and Science Engineering
,
Fort Worth, TX
, pp.
897
902
.
80.
Brady
,
M.
,
1985
, “
Artificial Intelligence and Robotics
,”
Artificial Intelligence
,
26
(
1
), pp.
79
121
. https://doi.org/10.1016/0004-3702
81.
Roncone
,
A.
,
Mangin
,
O.
, and
Scassellati
,
B.
,
2017
, “
Transparent Role Assignment and Task Allocation in Human Robot Collaboration
,”
Proceedings of the IEEE International Conference on Robotics Automation
,
Singapore
, pp.
1014
1021
.
82.
Huang
,
C. M.
, and
Mutlu
,
B.
,
2016
, “
Anticipatory Robot Control for Efficient Human-Robot Collaboration
,”
ACM/IEEE International Conference on Human-Robot Interaction
,
Christchurch, New Zealand
, pp.
83
90
.
83.
Doltsinis
,
S.
,
Krestenitis
,
M.
, and
Doulgeri
,
Z.
,
2020
, “
A Machine Learning Framework for Real-Time Identification of Successful Snap-Fit Assemblies
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
1
), pp.
513
523
. 10.1109/TASE.2019.2932834
84.
Akan
,
B.
,
Curuklu
,
B.
,
Spampinato
,
G.
, and
Asplund
,
L.
,
2010
, “
Towards Robust Human Robot Collaboration in Industrial Environments
,”
ACM/IEEE International Conference on Human-Robot Interaction
,
Osaka, Japan
, pp.
71
72
.
85.
Károly
,
A. I.
,
Kuti
,
J.
, and
Galambos
,
P.
,
2018
, “
Unsupervised Real-Time Classification of Cycle Stages in Collaborative Robot Applications
,”
Proceedings of the IEEE Symposium on Applied Machine Intelligence and Informatics
,
Kosice, Slovakia
, pp.
97
102
.
86.
Batth
,
R. S.
,
Nayyar
,
A.
, and
Nagpal
,
A.
,
2019
, “
Internet of Robotic Things: Driving Intelligent Robotics of Future—Concept, Architecture, Applications and Technologies
,”
Proceedings of the International Conference on Computer Science
,
Jalandhar, India
, pp.
151
160
.
87.
Sadrfaridpour
,
B.
, and
Wang
,
Y.
,
2018
, “
Collaborative Assembly in Hybrid Manufacturing Cells: An Integrated Framework for Human-Robot Interaction
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1178
1192
. 10.1109/TASE.2017.2748386
88.
Liu
,
H.
,
Fang
,
T.
,
Zhou
,
T.
, and
Wang
,
L.
,
2018
, “
Towards Robust Human-Robot Collaborative Manufacturing: Multimodal Fusion
,”
IEEE Access
,
6
, pp.
74762
74771
. 10.1109/ACCESS.2018.2884793
89.
Sariel
,
S.
,
Yildiz
,
P.
,
Karapinar
,
S.
,
Altan
,
D.
, and
Kapotoglu
,
M.
,
2015
, “
Robust Task Execution Through Experience-Based Guidance for Cognitive Robots
,”
Proceedings of the International Conference on Advanced Robotics
,
Istanbul, Turkey
, pp.
663
668
.
90.
Reimann
,
J.
, and
Sziebig
,
G.
,
2019
, “
The Intelligent Factory Space—A Concept for Observing, Learning and Communicating in the Digitalized Factory
,”
IEEE Access
,
7
, pp.
70891
70900
. 10.1109/ACCESS.2019.2919340
91.
Ravichandar
,
H. C.
, and
Dani
,
A.
,
2015
, “
Human Intention Inference and Motion Modeling Using Approximate E-M with Online Learning
,”
IEEE International Conference Intelligence on Robots Systems
,
Hamburg, Germany
, pp.
1819
1824
.
92.
Zhang
,
J.
,
Liu
,
H.
,
Chang
,
Q.
,
Wang
,
L.
, and
Gao
,
R.
,
2020
, “
Recurrent Neural Network for Motion Trajectory Prediction in Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
69
(
1
), pp.
9
12
. 10.1016/j.cirp.2020.04.077
93.
Wang
,
W.
,
Li
,
R.
,
Chen
,
Y.
,
Diekel
,
Z. M.
, and
Jia
,
Y.
,
2019
, “
Facilitating Human-Robot Collaborative Tasks by Teaching-Learning-Collaboration From Human Demonstrations
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
2
), pp.
640
653
. 10.1109/TASE.2018.2840345
94.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
. 10.1016/j.ymssp.2013.06.004
95.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
157
169
. 10.1016/j.jmsy.2018.01.006
96.
Wang
,
P.
,
Gao
,
R.
, and
Fan
,
Z.
,
2015
, “
Cloud Computing for Cloud Manufacturing: Benefits and Limitations
,”
ASME J. Manuf. Sci. Eng. Trans.
,
137
(
4
), p.
044002
.
97.
Gao
,
R.
,
Wang
,
L.
,
Teti
,
R.
,
Dornfeld
,
D.
,
Kumara
,
S.
,
Mori
,
M.
, and
Helu
,
M.
,
2015
, “
Cloud-Enabled Prognosis for Manufacturing
,”
CIRP Ann.
,
64
(
2
), pp.
749
772
. 10.1016/j.cirp.2015.05.011
98.
Malkoff
,
D. B.
,
1987
, “
A Framework for Real-Time Fault Detection and Diagnosis Using Temporal Data
,”
Artif. Intell. Eng.
,
2
(
2
), pp.
97
111
. 10.1016/0954-1810(87)90144-0
99.
Gang
,
N.
,
Son
,
J. D.
,
Widodo
,
A.
,
Yang
,
B. S.
,
Hwang
,
D. H.
, and
Kang
,
D. S.
,
2007
, “
A Comparison of Classifier Performance for Fault Diagnosis of Induction Motor Using Multi-Type Signals
,”
Struct. Health Monit.
,
6
(
3
), pp.
215
229
. 10.1177/1475921707081110
100.
Wang
,
J.
,
Liu
,
S.
,
Gao
,
R.
, and
Yan
,
R.
,
2012
, “
Current Envelope Analysis for Defect Identification and Diagnosis in Induction Motors
,”
J. Manuf. Syst.
,
31
(
4
), pp.
380
387
. 10.1016/j.jmsy.2012.06.005
101.
Zhang
,
J.
,
Wang
,
P.
,
Gao
,
R.
, and
Yan
,
R.
,
2018
, “
An Image Processing Approach to Machine Fault Diagnosis Based on Visual Words Representation
,”
Proc. Manuf.
,
19
, pp.
42
49
. 10.1016/j.promfg.2018.01.007
102.
Sun
,
C.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R.
,
2016
, “
A Sparse Approach to Fault Severity Classification for Gearbox Monitoring
,”
Proceedings of the International Conference on Information Fusion
,
Heidelberg, Germany
, pp.
2303
2308
.
103.
Du
,
Z.
,
Chen
,
X.
,
Zhang
,
H.
, and
Yan
,
R.
,
2015
, “
Sparse Feature Identification Based on Union of Redundant Dictionary for Wind Turbine Gearbox Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6594
6605
. 10.1109/TIE.2015.2464297
104.
Zhou
,
C.
,
Liu
,
K.
,
Zhang
,
X.
,
Zhang
,
W.
, and
Shi
,
J.
,
2016
, “
An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
1102
1111
. 10.1109/TASE.2015.2468058
105.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
. 10.1115/1.4029823
106.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stavroulakis
,
P. I.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and in-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
. 10.1016/j.matdes.2016.01.099
107.
Kwon
,
O.
,
Kim
,
H. G.
,
Ham
,
M. J.
,
Kim
,
W.
,
Kim
,
G. H.
,
Cho
,
J. H.
,
Kim
,
N. I. L.
, and
Kim
,
K.
,
2020
, “
A Deep Neural Network for Classification of Melt-Pool Images in Metal Additive Manufacturing
,”
J. Intell. Manuf.
,
31
(
2
), pp.
375
386
. 10.1007/s10845-018-1451-6
108.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for on-Line Defect Recognition in Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
451
454
. 10.1016/j.cirp.2019.03.021
109.
Wang
,
P.
,
Ananya
,
Yan
,
R.
, and
Gao
,
R. X.
,
2017
, “
Virtualization and Deep Recognition for System Fault Classification
,”
J. Manuf. Syst.
,
44
(
Part 2
), pp.
310
316
. 10.1016/j.jmsy.2017.04.012
110.
Ding
,
X.
, and
He
,
Q.
,
2017
, “
Energy-Fluctuated Multiscale Feature Learning with Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis
,”
IEEE Trans. Instrum. Meas.
,
66
(
8
), pp.
1926
1935
. 10.1109/TIM.2017.2674738
111.
Sun
,
W.
,
Yao
,
B.
,
Zeng
,
N.
,
Chen
,
B.
,
He
,
Y.
,
Cao
,
X.
, and
He
,
W.
,
2017
, “
An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network
,”
Materials (Basel)
,
10
(
7
), pp.
790
. 10.3390/ma10070790
112.
Eren
,
L.
,
Ince
,
T.
, and
Kiranyaz
,
S.
,
2019
, “
A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier
,”
J. Signal Process. Syst.
,
91
(
2
), pp.
179
189
. 10.1007/s11265-018-1378-3
113.
Grezmak
,
J.
,
Zhang
,
J.
,
Wang
,
P.
,
Loparo
,
K. A.
, and
Gao
,
R.
,
2020
, “
Interpretable Convolutional Neural Network Through Layer-Wise Relevance Propagation for Machine Fault Diagnosis
,”
IEEE Sens. J.
,
20
(
6
), pp.
3172
3181
. 10.1109/JSEN.2019.2958787
114.
Ma
,
M.
,
Sun
,
C.
, and
Chen
,
X.
,
2017
, “
Discriminative Deep Belief Networks with Ant Colony Optimization for Health Status Assessment of Machine
,”
IEEE Trans. Instrum. Meas.
,
66
(
12
), pp.
3115
3125
. 10.1109/TIM.2017.2735661
115.
Yang
,
F.
,
Habibullah
,
M. S.
,
Zhang
,
T.
,
Xu
,
Z.
,
Lim
,
P.
, and
Nadarajan
,
S.
,
2016
, “
Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2633
2644
. 10.1109/TIE.2016.2515054
116.
Benkedjouh
,
T.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Rechak
,
S.
,
2013
, “
Remaining Useful Life Estimation Based on Nonlinear Feature Reduction and Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1751
1760
. 10.1016/j.engappai.2013.02.006
117.
Tran
,
V. T.
,
Thom Pham
,
H.
,
Yang
,
B. S.
, and
Tien Nguyen
,
T.
,
2012
, “
Machine Performance Degradation Assessment and Remaining Useful Life Prediction Using Proportional Hazard Model and Support Vector Machine
,”
Mech. Syst. Signal Process.
,
32
, pp.
320
330
. 10.1016/j.ymssp.2012.02.015
118.
Nuhic
,
A.
,
Terzimehic
,
T.
,
Soczka-Guth
,
T.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2013
, “
Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods
,”
J. Power Sources
,
239
, pp.
680
688
. 10.1016/j.jpowsour.2012.11.146
119.
Khelif
,
R.
,
Chebel-Morello
,
B.
,
Malinowski
,
S.
,
Laajili
,
E.
,
Fnaiech
,
F.
, and
Zerhouni
,
N.
,
2017
, “
Direct Remaining Useful Life Estimation Based on Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2276
2285
. 10.1109/TIE.2016.2623260
120.
Hu
,
C.
,
Youn
,
B. D.
,
Wang
,
P.
, and
Taek Yoon
,
J.
,
2012
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Reliab. Eng. Syst. Saf.
,
103
, pp.
120
135
. 10.1016/j.ress.2012.03.008
121.
Malhi
,
A.
,
Yan
,
R.
, and
Gao
,
R.
,
2011
, “
Prognosis of Defect Propagation Based on Recurrent Neural Networks
,”
IEEE Trans. Instrum. Meas.
,
60
(
3
), pp.
703
711
. 10.1109/TIM.2010.2078296
122.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R.
,
2018
, “
Long Short-Term Memory for Machine Remaining Life Prediction
,”
J. Manuf. Syst.
,
48
, pp.
78
86
. 10.1016/j.jmsy.2018.05.011
123.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
. 10.1109/TVT.2018.2805189
124.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
. 10.1016/j.neucom.2017.02.045
125.
Wang
,
P.
, and
Gao
,
R.
,
2017
, “
Automated Performance Tracking for Heat Exchangers in HVAC
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
634
645
. 10.1109/TASE.2017.2666184
126.
Wang
,
P.
, and
Gao
,
R.
,
2016
, “
Markov Nonlinear System Estimation for Engine Performance Tracking
,”
ASME J. Eng. Gas Turbines Power.
,
138
(
9
), p.
091201
. 10.1115/1.4032680
127.
Yang
,
C.
,
Li
,
Z.
,
Liang
,
B.
,
Lu
,
W.
,
Wang
,
X.
, and
Liu
,
H.
,
2017
, “
A Particle Filter and Long Short Term Memory Fusion Algorithm for Failure Prognostic of Proton Exchange Membrane Fuel Cells
,”
Proceedings of the Chinese Control Decision Conference
,
Chongqing, China
, pp.
5646
5651
.
128.
Shaw
,
M. J.
, and
Whinston
,
A. B.
,
1989
, “
An Artificial Intelligence Approach to the Scheduling of Flexible Manufacturing Systems
,”
IIE Trans. (Institute Ind. Eng)
,
21
(
2
), pp.
170
183
. 10.1080/07408178908966221
129.
Hutchinson
,
G.K.
,
1984
, “
Flexibility is Key to Economic Feasibility of Automated Small Batch Manufacturing
,”
Ind. Eng.
,
16
(
6
), pp.
77
86
.
130.
Shin
,
Y. C.
, and
Xu
,
C.
,
2008
,
Intelligent Systems: Modeling, Optimization and Control
,
CRC Press
,
Boca Raton, FL
.
131.
Xu
,
C.
, and
Shin
,
Y. C.
,
2008
, “
A Fuzzy Inverse Model Construction Method for General Monotonic Multi-Input-Single-Output (MISO) Systems
,”
IEEE Trans. Fuzzy Syst.
,
16
(
5
), pp.
1216
1231
. 10.1109/TFUZZ.2008.924336
132.
Xu
,
C.
, and
Shin
,
Y. C.
,
2011
, “
A Self-Tuning Fuzzy Controller for a Class of Multi-Input Multi-Output Nonlinear Systems
,”
Eng. Appl. Artif. Intell.
,
24
(
2
), pp.
238
250
. 10.1016/j.engappai.2010.10.021
133.
Liu
,
J.
,
Li
,
J.
,
Ji
,
Y.
, and
Xu
,
C.
,
2011
, “
Investigation on the Effect of SiC Nanoparticles on Cutting Forces for Micro-Milling Magnesium Matrix Composites
,”
ASME 2011 International Conference on Manufacturing Science and Engineering, MSEC
,
Corvallis, OR
, pp.
525
536
.
134.
Liu
,
J.
,
Li
,
J.
, and
Xu
,
C.
,
2013
, “
Cutting Force Prediction on Micromilling Magnesium Metal Matrix Composites with Nanoreinforcements
,”
ASME J. Micro Nano-Manuf.
,
1
(
1
), p.
011010
. 10.1115/1.4023286
135.
Zhang
,
X. W.
,
Ding
,
Y. Q.
,
Lv
,
Y. Y.
,
Shi
,
A. Y.
, and
Liang
,
R. Y.
,
2011
, “
A Vision Inspection System for the Surface Defects of Strongly Reflected Metal Based on Multi-Class SVM
,”
Expert Syst. Appl.
,
38
(
5
), pp.
5930
5939
. 10.1016/j.eswa.2010.11.030
136.
Zhang
,
H. C.
, and
Huang
,
S. H.
,
1995
, “
Applications of Neural Networks in Manufacturing: A State-of-the-Art Survey
,”
Int. J. Prod. Res.
,
33
(
3
), pp.
705
728
. 10.1080/00207549508930175
137.
Ma
,
G.
, and
Zhang
,
F.
,
2012
, “Genetic Algorithms for Manufacturing Process Planning,”
Variants of Evolutionary Algorithms for Real-World Applications
,
R.
Chiong
,
T.
Weise
, and
Z.
Michalewicz
, eds.,
Springer, Berlin
,
Heidelberg
, pp.
205
244
.
138.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
. 10.1115/1.4036350
139.
Udo
,
G. J.
,
1992
, “
Neural Networks Applications in Manufacturing Processes
,”
Comput. Ind. Eng.
,
23
(
1–4
), pp.
97
100
. 10.1016/0360-8352(92)90072-R
140.
Wacker
,
J. G.
,
1996
, “
A Theoretical Model of Manufacturing Lead Times and Their Relationship to a Manufacturing Goal Hierarchy
,”
Decis. Sci.
,
27
(
3
), pp.
483
517
. 10.1111/j.1540-5915.1996.tb01823.x
141.
Chaudhari
,
P. S.
,
Patel
,
P. D. M.
, and
Juneja
,
J. L.
,
2012
, “
Artificial Intelligence Apply for Prediction of Laser Cutting Process—A Review
,”
Int. J. Eng. Res. Appl.
,
2
(
4
), pp.
1025
1028
.
142.
Xu
,
C.
, and
Shin
,
Y. C.
,
2008
, “
An Adaptive Fuzzy Controller for Constant Cutting Force in End-Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031001
. 10.1115/imece2006-13758
143.
Tang
,
Y.
, and
Xu
,
C.
,
2010
, “
Online Tool Deflection Compensation in End Milling of Curved Workpiece
,”
Int. J Electron. Comput. Eng. Edu.
,
1
(
1
), pp.
23
28
.
144.
Khorasani
,
A. M.
,
Reza Soleymani Yazdi
,
M.
, and
Safizadeh
,
M. S.
,
2011
, “
Tool Life Prediction in Face Milling Machining of 7075 Al by Using Artificial Neural Networks (ANN) and Taguchi Design of Experiment (DOE)
,”
Int. J. Eng. Technol.
,
3
(
1
), pp.
30
35
. 10.7763/IJET.2011.V3.196
145.
Pimenov
,
D. Y.
,
Bustillo
,
A.
, and
Mikolajczyk
,
T.
,
2018
, “
Artificial Intelligence for Automatic Prediction of Required Surface Roughness by Monitoring Wear on Face Mill Teeth
,”
J. Intell. Manuf.
,
29
(
5
), pp.
1045
1061
. 10.1007/s10845-017-1381-8
146.
Xu
,
C.
, and
Shin
,
Y. C.
,
2007
, “
Control of Cutting Force for Creep-Feed Grinding Processes Using a Multi-Level Fuzzy Controller
,”
ASME
J. Dyn. Syst. Meas. Control. Trans
,
129
(
4
), pp.
480
492
. 10.1115/1.2718238
147.
Xu
,
C.
,
Tang
,
Y.
, and
Jackson
,
M. J.
,
2009
, “
Survey on Various Control Techniques in Micro Grinding Processes
,”
Int. J. Nanomanuf.
,
3
(
4
), pp.
398
408
. 10.1504/IJNM.2009.027503
148.
Sadeghi
,
B. H. M.
,
2000
, “
BP-Neural Network Predictor Model for Plastic Injection Molding Process
,”
J. Mater. Process. Technol.
,
103
(
3
), pp.
411
416
. 10.1016/S0924-0136(00)00498-2
149.
Saleh Meiabadi
,
M.
,
Vafaeesefat
,
A.
, and
Sharifi
,
F.
,
2013
, “
Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
,”
J. Optim. Ind. Eng.
,
13
, pp.
49
54
.
150.
Liu
,
Y.
,
Zhao
,
T.
,
Ju
,
W.
,
Shi
,
S.
,
Shi
,
S.
, and
Shi
,
S.
,
2017
, “
Materials Discovery and Design Using Machine Learning
,”
J. Mater.
,
3
(
3
), pp.
159
177
.
151.
Bertinetto
,
C.
,
Duce
,
C.
,
Micheli
,
A.
,
Solaro
,
R.
,
Starita
,
A.
, and
Tiné
,
M. R.
,
2009
, “
Evaluation of Hierarchical Structured Representations for QSPR Studies of Small Molecules and Polymers by Recursive Neural Networks
,”
J. Mol. Graph. Model.
,
27
(
7
), pp.
797
802
. 10.1016/j.jmgm.2008.12.001
152.
Carrera
,
G. V. S. M.
,
Branco
,
L. C.
,
Aires-de-Sousa
,
J.
, and
Afonso
,
C. A. M.
,
2008
, “
Exploration of Quantitative Structure-Property Relationships (QSPR) for the Design of New Guanidinium Ionic Liquids
,”
Tetrahedron
,
64
(
9
), pp.
2216
2224
. 10.1016/j.tet.2007.12.021
153.
Jia
,
Y.
,
Chowdhury
,
A.
, and
Xu
,
C.
,
2020
, “
Electromagentic Property of Polymer Derived SiC-C Solid Solution Formed at Ultra-High Temperature
,”
Carbon
,
162
, pp.
74
85
. 10.1016/j.carbon.2020.02.036
154.
Chowdhury
,
M. A. R.
,
Wang
,
K.
,
Jia
,
Y.
, and
Xu
,
C.
,
2020
, “
Semiconductor-Conductor Transition of Pristine Polymer-Derived Ceramics SiC Pyrolyzed at Temperature Range From 1200 °C to 1800 °C
,”
J. Am. Ceram. Soc.
,
103
(
4
), pp.
2630
2642
. 10.1111/jace.16961
155.
Chowdhury
,
M. A.
,
Wang
,
K.
,
Jia
,
Y.
, and
Xu
,
C.
,
2020
, “
Electrical Conductivity and Structural Evolution of Polymer Derived SiC Ceramics Pyrolyzed From 1200 °C to 1800 °C
,”
ASME J. Micro Nano-Manuf.
,
8
(
2
), p.
024502
. 10.1115/1.4046191
156.
Regli
,
W.
,
Rossignac
,
J.
,
Shapiro
,
V.
, and
Srinivasan
,
V.
,
2016
, “
The New Frontiers in Computational Modeling of Material Structures
,”
CAD Comput. Aided Des.
,
77
, pp.
73
85
. 10.1016/j.cad.2016.03.002
157.
Yan
,
R.
,
Shen
,
F.
,
Sun
,
C.
, and
Chen
,
X.
,
2019
, “
Knowledge Transfer for Rotary Machine Fault Diagnosis
,”
IEEE Sens. J.
,
20
(
15
), pp.
8374
8393
. 10.1109/JSEN.2019.2949057
158.
Wang
,
J.
,
Zhao
,
R.
, and
Gao
,
R.
,
2020
, “
Probabilistic Transfer Factor Analysis for Machinery Autonomous Diagnosis Cross Various Operating Conditions
,”
IEEE Trans. Instrum. Meas.
,
69
(
8
), pp.
5335
5344
. 10.1109/tim.2019.2963731
159.
Hasan
,
M. J.
, and
Kim
,
J.-M.
,
2018
, “
Bearing Fault Diagnosis Under Variable Rotational Speeds Using Stockwell Transform-Based Vibration Imaging and Transfer Learning
,”
Appl. Sci.
,
8
(
12
), p.
2357
. 10.3390/app8122357
160.
Wang
,
P.
, and
Gao
,
R.
,
2020
, “
Transfer Learning for Enhanced Machine Fault Diagnosis in Manufacturing
,”
CIRP Ann.
,
69
(
1
), pp.
413
416
.
161.
Kim
,
H.
, and
Youn
,
B. D.
,
2019
, “
A New Parameter Repurposing Method for Parameter Transfer with Small Dataset and Its Application in Fault Diagnosis of Rolling Element Bearings
,”
IEEE Access
,
7
, pp.
46917
46930
. 10.1109/ACCESS.2019.2906273
162.
Xiong
,
Q.
,
Zhang
,
J.
,
Wang
,
P.
,
Liu
,
D.
, and
Gao
,
R.
,
2020
, “
Transferable Two-Stream Convolutional Neural Network for Human Action Recognition
,”
J. Manuf. Syst.
,
In Press
10.1016/j.jmsy.2020.04.007
163.
Kozjek
,
D.
,
Vrabič
,
R.
,
Kralj
,
D.
, and
Butala
,
P.
,
2017
, “
Interpretative Identification of the Faulty Conditions in a Cyclic Manufacturing Process
,”
J. Manuf. Syst.
,
43
(
Part 2
), pp.
214
224
. 10.1016/j.jmsy.2017.03.001
164.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inf. Process. Syst.
,
3
, pp.
2672
2680
.
165.
Wang
,
Z.
,
Wang
,
J.
, and
Wang
,
Y.
,
2018
, “
An Intelligent Diagnosis Scheme Based on Generative Adversarial Learning Deep Neural Networks and Its Application to Planetary Gearbox Fault Pattern Recognition
,”
Neurocomputing
,
310
, pp.
213
222
. 10.1016/j.neucom.2018.05.024
166.
Tuv
,
E.
,
Guven
,
M.
,
Ennis
,
P.
, and
Lee
,
D. H. L.
,
2018
,
White Paper
.
167.
Malaca
,
P.
,
Rocha
,
L. F.
,
Gomes
,
D.
,
Silva
,
J.
, and
Veiga
,
G.
,
2019
, “
Online Inspection System Based on Machine Learning Techniques: Real Case Study of Fabric Textures Classification for the Automotive Industry
,”
J. Intell. Manuf.
,
30
(
1
), pp.
351
361
. 10.1007/s10845-016-1254-6
You do not currently have access to this content.