Abstract

Distributed production paradigms have grown in discrete manufacturing as discrete products are increasingly made by global, distributed networks. Challenges faced by discrete manufacturing, such as increased globalization, market volatility, workforce shortages, and mass personalization have necessitated scalable solutions that improve the agility of production systems. These challenges have driven the need for better collaboration and coordination in production via improved integration of production systems across the product life cycle. This paper describes key industry use cases to motivate the research and development needed for distributed production in discrete manufacturing. The technological challenges that have hindered distributed production in discrete manufacturing are presented as a state-of-the-art review of the standards and technologies that have been developed to overcome these challenges. Based on this review, future research directions are described to address the needs of industry and achieve the goals of distributed production in discrete manufacturing.

References

References
1.
Hedberg
,
T.
,
Helu
,
M.
, and
Sprock
,
T.
,
2018
, “
A Standards and Technology Roadmap for Scalable Distributed Manufacturing Systems
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
,
Paper No. MSEC2018-6550, V003T02A019. http:dx.doi.org/10.1115/MSEC2018-6550
2.
Lanza
,
G.
,
Ferdows
,
K.
,
Kara
,
S.
,
Mourtzis
,
D.
,
Schuh
,
G.
,
Váncza
,
J.
,
Wang
,
L.
, and
Wiendahl
,
H.-P.
,
2019
, “
Global Production Networks: Design and Operation
,”
CIRP Ann. Manuf. Technol.
,
68
(
2
), pp.
823
841
. 10.1016/j.cirp.2019.05.008
3.
Matt
,
D. T.
,
Rauch
,
E.
, and
Dallasega
,
P.
,
2015
, “
Trends Towards Distributed Manufacturing Systems and Modern Forms for Their Design
,”
Procedia CIRP
,
33
, pp.
185
190
. 10.1016/j.procir.2015.06.034
4.
Srai
,
J. S.
,
Kumar
,
M.
,
Graham
,
G.
,
Phillips
,
W.
,
Tooze
,
J.
,
Ford
,
S.
,
Beecher
,
P.
,
Raj
,
B.
,
Gregory
,
M.
,
Tiwari
,
M. K.
,
Ravi
,
B.
,
Neely
,
A.
,
Shankar
,
R.
,
Charnley
,
F.
, and
Tiwari
,
A.
,
2016
, “
Distributed Manufacturing: Scope, Challenges and Opportunities
,”
Int. J. Prod. Res.
,
54
(
23
), pp.
6917
6935
. 10.1080/00207543.2016.1192302
5.
Corwin
,
J.
, and
Puckett
,
R.
,
2009
, “
Japan’s Manufacturing Competitiveness Strategy: Challenges for Japan, Opportunities for the United States
,” http://digitalcommons.ilr.cornell.edu/key_workplace/646, Accessed November 20, 2019.
6.
Harding
,
R.
,
2019
, “
Japan’s Workforce Set to Shrink by Almost 13m in Next 20 Years
,”
Financial Times
. Accessed November 20, 2019.
7.
Subcommittee on Advanced Manufacturing of the Committee on Technology of the National Science and Technology Council
,
2018
, “
Strategy for American Leadership in Advanced Manufacturing
,” https://www.whitehouse.gov/wp-content/uploads/2018/10/Advanced-Manufacturing-Strategic-Plan-2018.pdf, Accessed November 20, 2019.
8.
World Economic Forum
,
2013
, “
Manufacturing for Growth: Strategies for Driving Growth and Employment
,” http://reports.weforum.org/manufacturing-growth/, Accessed November 20, 2019.
9.
Thoben
,
K.-D.
,
Wiesner
,
S.
, and
Wuest
,
T.
,
2017
, “
‘Industrie 4.0’ and Smart Manufacturing—A Review of Research Issues and Application Examples
,”
Int. J. Autom. Technol.
,
11
(
1
), pp.
4
16
. 10.20965/ijat.2017.p0004
10.
Hu
,
S. J.
,
2013
, “
Evolving Paradigms of Manufacturing: From Mass Production to Mass Customization and Personalization
,”
Procedia CIRP
,
7
, pp.
3
8
. 10.1016/j.procir.2013.05.002
11.
Schaeffer
,
E.
,
2017
,
Industry X.0: Realizing Digital Value in Industrial Sectors
,
Redline Verlag
,
München
.
12.
Sharifi
,
H.
, and
Zhang
,
Z.
,
1999
, “
A Methodology for Achieving Agility in Manufacturing Organisations: An Introduction
,”
Int. J. Prod. Econ.
,
62
(
1–2
), pp.
7
22
. 10.1016/S0925-5273(98)00217-5
13.
Hedberg
,
T.
,
Feeney
,
A. B.
,
Helu
,
M.
, and
Camelio
,
J. A.
,
2017
, “
Toward a Lifecycle Information Framework and Technology in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021010
. 10.1115/1.4034132
14.
Evans
,
P. C.
, and
Annunziata
,
M.
,
2012
, “
Industrial Internet: Pushing the Boundaries
,”
Report, General Electric
.
15.
Fischer
,
K.
,
Rosche
,
P.
,
Trainer
,
A.
,
Barnard Feeney
,
A.
, and
Hedberg
,
T.
, Jr.
,
2015
, “
Investigating the Impact of Standards-Based Interoperability for Design to Manufacturing and Quality in the Supply Chain
,”
Report NISTGCR 15-1009
,
National Institute of Standards and Technology
.
16.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
. 10.1016/j.rcim.2011.07.002
17.
D’Amours
,
S.
,
Montreuil
,
B.
,
Lefrancois
,
P.
, and
Soumis
,
F.
,
1999
, “
Networked Manufacturing: The Impact of Information Sharing
,”
Int. J. Prod. Econ.
,
58
(
1
), pp.
63
79
. 10.1016/S0925-5273(98)00088-7
18.
Li
,
B.-H.
,
Zhang
,
L.
,
Wang
,
S.-L.
,
Tao
,
F.
,
Cao
,
J.-W.
,
Jiang
,
X.-D.
,
Song
,
X.
, and
Chai
,
X.-D.
,
2010
, “
Cloud Manufacturing: A New Service-Oriented Networked Manufacturing Model
,”
Comput. Integr. Manuf. Syst.
,
16
(
1
), pp.
1
7
.
19.
Lu
,
T.-P.
, and
Yih
,
Y.
,
2001
, “
An Agent-Based Production Control Framework for Multiple-Line Collaborative Manufacturing
,”
Int. J. Prod. Res.
,
39
(
10
), pp.
2155
2176
. 10.1080/00207540110038478
20.
Wang
,
L.
,
Keshavarzmanesh
,
S.
,
Feng
,
H.-Y.
, and
Buchal
,
R. O.
,
2009
, “
Assembly Process Planning and Its Future in Collaborative Manufacturing: A Review
,”
Int. J. Adv. Manuf. Technol.
,
41
(
1–2
), pp.
132
144
. 10.1007/s00170-008-1458-9
21.
Browne
,
J.
,
Dubois
,
D.
,
Rathmill
,
K.
,
Sethi
,
S. P.
, and
Stecke
,
K. E.
,
1984
, “
Classification of Flexible Manufacturing Systems
,”
FMS Mag.
,
2
(
2
), pp.
114
117
.
22.
ElMaraghy
,
H. A.
,
2005
, “
Flexible and Reconfigurable Manufacturing Systems Paradigms
,”
Int. J. Flexible Manuf. Syst.
,
17
(
4
), pp.
261
276
. 10.1007/s10696-006-9028-7
23.
The International Society of Automation
,
2010
, “
Enterprise-Control System Integration—Part 1: Models and Terminology (ANSI/ISA-95.00.01-2010)
.”
24.
Johnsson
,
C.
,
Brandl
,
D.
, and
Unger
,
K.
,
2006
, “
ISA 95 for Beginners
.”
Report, WBF—The Forum for Automation and Manufacturing Professionals
.
25.
Kraft
,
E. M.
,
2016
, “
The Air Force Digital Thread/Digital Twin-Life Cycle Integration and Use of Computational and Experimental Knowledge
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
, p.
0897
.
26.
Salado
,
A.
, and
Nilchiani
,
R.
,
2015
, “
A Research on Measuring and Reducing Problem Complexity to Increase System Affordability: From Theory to Practice
,”
Procedia Comput. Sci.
,
44
, pp.
21
30
. 10.1016/j.procs.2015.03.037
27.
Salado
,
A.
,
Nilchiani
,
R.
, and
Verma
,
D.
,
2016
, “
A Contribution to the Scientific Foundations of Systems Engineering: Solution Spaces and Requirements
,”
J. Syst. Sci. Syst. Eng.
,
26
(
5
), pp.
549
589
. 10.1007/s11518-016-5315-3
28.
Tolk
,
A.
, and
Muguira
,
J. A.
,
2003
, “
The Levels of Conceptual Interoperability Model
,”
Proceedings of the 2003 Fall Simulation Interoperability Workshop
,
Orlando, FL
,
Sept. 14–19
, pp.
1
11
.
29.
Wang
,
W.
,
Tolk
,
A.
, and
Wang
,
W.
,
2009
, “
The Levels of Conceptual Interoperability Model: Applying Systems Engineering Principles to M&S
,”
Proceedings of the 2009 Spring Simulation Multiconference
,
San Diego, CA
,
Mar. 22–27
,
Article 168
.
30.
Kulvatunyou
,
B.
,
Wallace
,
E.
,
Kiritsis
,
D.
,
Smith
,
B.
, and
Will
,
C.
,
2018
, “The Industrial Ontologies Foundry Proof-of-Concept Project,”
Advances in Production Management Systems: Smart Manufacturing for Industry 4.0
,
Moon
,
I.
,
Lee
,
G. M.
,
Park
,
J.
,
Kiritsis
,
D.
, and
von Cieminski
,
G.
, eds.,
Springer
,
New York
, pp.
402
409
.
31.
Shah
,
J. J.
, and
Mäntylä
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Srinivasan
,
V.
,
1999
, “
A Geometrical Product Specification Language Based on a Classification of Symmetry Groups
,”
Comput. Aided Des.
,
31
(
11
), pp.
659
668
. 10.1016/S0010-4485(99)00066-4
33.
International Organization for Standards
,
2014
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 242: Application Protocol: Managed Model-Based 3D Engineering (ISO 103030-242)
.”
34.
Shea
,
K.
,
Aish
,
R.
, and
Gourtovaia
,
M.
,
2005
, “
Towards Integrated Performance-Driven Generative Design Tools
,”
Autom. Constr.
,
14
(
2
), pp.
253
264
. 10.1016/j.autcon.2004.07.002
35.
International Organization for Standards
,
2014
, “
Asset Management—Overview, Principles, and Terminology (ISO 55000:2014)
.”
36.
Ameri
,
F.
, and
Thornhill
,
S.
,
2013
, “
Manufacturing Capability Inference and Supplier Classification Based on a Formal Thesaurus
,”
IFIP International Conference on Advances in Production Management Systems (APMS 2013)
,
State College, PA
,
Sept. 9–12
, Springer, pp.
344
351
.
37.
Ameri
,
F.
, and
Sabbagh
,
R.
,
2016
, “
Digital Factories for Capability Modeling and Visualization
,”
IFIP International Conference on Advances in Production Management Systems (APMS 2016)
,
Iguassu Falls, Brazil
,
Sept. 3–7
, Springer, pp.
69
78
.
38.
Nelaturi
,
S.
,
Burton
,
G.
,
Fritz
,
C.
, and
Kurtoglu
,
T.
,
2015
, “
Automatic Spatial Planning for Machining Operations
,”
2015 IEEE International Conference on Automation Science and Engineering (CASE)
,
Gothenburg, Sweden
,
Aug. 24–28
, IEEE, pp.
677
682
.
39.
Defense Advanced Research Projects Agency
, “
Adaptive Vehicle Make (AVM) (Archived)
,” https://www.darpa.mil/program/adaptive-vehicle-make, Accessed November 27, 2019.
40.
Norman
,
D. A.
,
1988
,
The Design of Everyday Things
,
Basic Books
,
New York
.
41.
Kim
,
N.
,
Shin
,
D.
,
Wysk
,
R.
, and
Rothrock
,
L.
,
2010
, “
Using Finite State Automata (FSA) for Formal Modelling of Affordances in Human–Machine Cooperative Manufacturing Systems
,”
Int. J. Prod. Res.
,
48
(
5
), pp.
1303
1320
. 10.1080/00207540802582235
42.
Fritz
,
C.
,
2016
, “
Automated Process Planning for CNC Machining
,”
AI Mag.
,
37
(
3
), pp.
116
117
. 10.1609/aimag.v37i3.2665
43.
Hayes
,
C.
, and
Wright
,
P.
,
1989
, “
Automating Process Planning: Using Feature Interactions to Guide Search
,”
J. Manuf. Syst.
,
8
(
1
), pp.
1
15
. 10.1016/0278-6125(89)90015-0
44.
Alting
,
L.
, and
Zhang
,
H.
,
1989
, “
Computer Aided Process Planning: The State-of-the-Art Survey
,”
Int. J. Prod. Res.
,
27
(
4
), pp.
553
585
. 10.1080/00207548908942569
45.
Al-wswasi
,
M.
,
Ivanov
,
A.
, and
Makatsoris
,
H.
,
2018
, “
A Survey on Smart Automated Computer-Aided Process Planning (ACAPP) Techniques
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
809
832
. 10.1007/s00170-018-1966-1
46.
Li
,
X.
,
Zhang
,
S.
,
Huang
,
R.
,
Huang
,
B.
,
Xu
,
C.
, and
Zhang
,
Y.
,
2018
, “
A Survey of Knowledge Representation Methods and Applications in Machining Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9–12
), pp.
3041
3059
. 10.1007/s00170-018-2433-8
47.
Liu
,
Y.
,
Wang
,
L.
,
Wang
,
X. V.
,
Xu
,
X.
, and
Zhang
,
L.
,
2019
, “
Scheduling in Cloud Manufacturing: State-of-the-Art and Research Challenges
,”
Int. J. Prod. Res.
,
57
(
15–16
), pp.
4854
4879
. 10.1080/00207543.2018.1449978
48.
Leo Kumar
,
S.
,
2019
, “
Knowledge-Based Expert System in Manufacturing Planning: State-of-the-Art Review
,”
Int. J. Prod. Res.
,
57
(
15–16
), pp.
4766
4790
. 10.1080/00207543.2018.1424372
49.
ROS Industrial
,
2018
, “
IMTS 2018—Leveraging Open Standards and Technologies to Re-Imagine Interoperability Within Factories
,” http://reports.weforum.org/manufacturing-growth/, Accessed December 2, 2019.
50.
Duffie
,
N.
,
1996
, “
Heterarchical Control of Highly Distributed Manufacturing Systems
,”
Int. J. Comput. Integr. Manuf.
,
9
(
4
), pp.
270
281
. 10.1080/095119296131562
51.
Maturana
,
F. P.
, and
Norrie
,
D. H.
,
1996
, “
Multi-Agent Mediator Architecture for Distributed Manufacturing
,”
J. Intell. Manuf.
,
7
(
4
), pp.
257
270
. 10.1007/BF00124828
52.
Shen
,
W.
, and
Norrie
,
D. H.
,
1999
, “
Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey
,”
Knowl. Inf. Syst.
,
1
(
2
), pp.
129
156
. 10.1007/BF03325096
53.
West
,
T. D.
, and
Blackburn
,
M.
,
2017
, “
Is Digital Thread/Digital Twin Affordable? A Systemic Assessment of the Cost of Dod’s Latest Manhattan Project
,”
Procedia Comput. Sci.
,
114
, pp.
47
56
. 10.1016/j.procs.2017.09.003
54.
Hedberg
,
T. D.
,
Bajaj
,
M.
, and
Camelio
,
J. A.
,
2020
, “
Using Graphs to Link Data Across the Product Lifecycle for Enabling Smart Manufacturing Digital Threads
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011011
. 10.1115/1.4044921
55.
Wells
,
L. J.
,
Camelio
,
J. A.
,
Williams
,
C. B.
, and
White
,
J.
,
2014
, “
Cyber-Physical Security Challenges in Manufacturing Systems
,”
Manuf. Lett.
,
2
(
2
), pp.
74
77
. 10.1016/j.mfglet.2014.01.005
56.
Helu
,
M.
, and
Hedberg
,
T.
, Jr.
,
2015
, “
Enabling Smart Manufacturing Research and Development Using a Product Lifecycle Test Bed
,”
Procedia Manuf.
,
1
, pp.
86
97
. 10.1016/j.promfg.2015.09.066
57.
Stouffer
,
K.
,
Falco
,
J.
, and
Scarfone
,
K.
,
2011
, “
Guide to Industrial Control Systems (ICS) Security
,”
Report NIST SP800-82
,
National Institute of Standards and Technology
.
58.
Stouffer
,
K.
,
Zimmerman
,
T.
,
Yang
,
C.
,
Cichonski
,
J.
,
Shah
,
N.
, and
Downard
,
W.
,
2019
, “
Cybersecurity Framework Manufacturing Profile Low Security Level Example Implementations Guide: Volume 3—Discrete-Based Manufacturing System Use Case
,”
Report NISTIR 8183A
,
National Institute of Standards and Technology
.
59.
Hedberg
,
T.
, Jr.
, and
Helu
,
M.
,
2017
, “
Design and Configuration of the Smart Manufacturing Systems Test Bed
,”
Report NISTAMS 200-1
,
National Institute of Standards and Technology
.
60.
International Electrochemical Commission
,
2016
, “
OPC Unified Architecture—Part 1: Overview and Concepts
.”
61.
MTConnect Institute
,
2018
, “
ANSI MTConnect Version 1.4.0 (ANSI/MTC1.4-2018)
.”
62.
Ruemler
,
S. P.
,
Zimmerman
,
K. E.
,
Hartman
,
N. W.
,
Hedberg
,
T.
, and
Barnard Feeny
,
A.
,
2017
, “
Promoting Model-Based Definition to Establish a Complete Product Definition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051008
. 10.1115/1.4034625
63.
Lynn
,
R.
,
Sati
,
M.
,
Tucker
,
T.
,
Rossignac
,
J.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2018
, “
Realization of the 5-Axis Machine Tool Digital Twin Using Direct Servo Control From CAM
,”
National Institute of Standards and Technology (NIST) 9th Model-Based Enterprise Summit (MBE 2018)
,
Gaithersburg, MD
,
Apr. 2–5
, pp.
29
33
.
64.
Monnier
,
L.
,
Bemstein
,
W. Z.
, and
Foufou
,
S.
,
2019
, “
A Proposed Mapping Method for Aligning Machine Execution Data to Numerical Control Code
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
66
72
.
65.
Helu
,
M.
,
Joseph
,
A.
, and
Hedberg
,
T.
, Jr.
,
2018
, “
A Standards-Based Approach for Linking As-Planned to As-Fabricated Product Data
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
487
490
. 10.1016/j.cirp.2018.04.039
66.
Digital Metrology Standards Consortium
,
2018
, “
ANSI Quality Information Framework 3.0 (ANSI QIF 3.0)
.”
67.
ASME Model-Based Enterprise Steering Group
,
2018
, “
Model-Based Enterprise Standards Committee: Recommendation Report
,” Report,
American Society of Mechanical Engineers
.
68.
Bernstein
,
W. Z.
,
Hedberg
,
T. D.
, Jr.
,
Helu
,
M.
, and
Feeney
,
A. B.
,
2018
, “
Contextualising Manufacturing Data for Lifecycle Decision-Making
,”
Int. J. Prod. Lifecycle Manage.
,
10
(
4
), p.
326
. 10.1504/IJPLM.2017.090328
69.
Regli
,
W.
,
Rossignac
,
J.
,
Shapiro
,
V.
, and
Srinivasan
,
V.
,
2016
, “
The New Frontiers in Computational Modeling of Material Structures
,”
Comput. Aided Des.
,
77
, pp.
73
85
. 10.1016/j.cad.2016.03.002
You do not currently have access to this content.