Abstract

The influence of postweld heat treatments (PWHTs) on the phase transformation characteristics, microstructural evolution, and mechanical properties of ultrasonic spot welded NiTi alloy with Al interlayer was investigated. At room temperature, the as-welded joints were fully austenitic, while the microstructure of welded joint after PWHT at 450 °C consisted of a mixture of martensite and austenite. The transformation temperatures were found to increase after the PWHT. Transmission electron microscope analysis shows that Al3Ti intermetallic compounds were formed on the Al side of the Al/NiTi interface after the PWHT at 450 °C for 90 min. Furthermore, finely dispersed nanoscale Ni4Ti3 precipitates were observed in the joint. These nanoscale precipitates resulted in an increase in the transformation temperatures and improved the mechanical properties of the PWHT material. During lap shear test, the as-welded samples failed in a brittle manner in the NiTi alloy, while the PWHT samples failed in the Al interlayer and exhibited ductile-like fracture characteristics.

References

1.
Zeng
,
Z.
,
Cong
,
B. Q.
,
Oliveira
,
J. P.
,
Ke
,
W. C.
,
Schell
,
N.
,
Peng
,
B.
,
Qi
,
Z. W.
,
Ge
,
F. G.
,
Zhang
,
W.
, and
Ao
,
S. S.
,
2020
, “
Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
32
, p.
101051
.
2.
Mohd Jani
,
J.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
. 10.1016/j.matdes.2013.11.084
3.
Morgan
,
N. B.
,
2004
, “
Medical Shape Memory Alloy Applications—The Market and Its Products
,”
Mater. Sci. Eng. A
,
378
(
1–2
), pp.
16
23
.
4.
Otsuka
,
K.
, and
Ren
,
X.
,
2005
, “
Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
,
50
(
5
), pp.
511
678
. 10.1016/j.pmatsci.2004.10.001
5.
Zeng
,
Z.
,
Yang
,
M.
,
Oliveira
,
J. P.
,
Song
,
D.
, and
Peng
,
B.
,
2016
, “
Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications
,”
Smart Mater. Struct
,
25
(
8
), p.
085001
. 10.1088/0964-1726/25/8/085001
6.
Chan
,
C. W.
,
Man
,
H. C.
, and
Yue
,
T. M.
,
2011
, “
Effects of Process Parameters Upon the Shape Memory and Pseudo-Elastic Behaviors of Laser-Welded NiTi Thin Foil
,”
Metall. Mater. Trans. A
,
42
(
8
), pp.
2264
2270
. 10.1007/s11661-011-0623-1
7.
Yang
,
D.
,
Jiang
,
H. C.
,
Zhao
,
M. J.
, and
Rong
,
L. J.
,
2014
, “
Microstructure and Mechanical Behaviors of Electron Beam Welded NiTi Shape Memory Alloys
,”
Mater. Des.
,
57
, pp.
21
25
. 10.1016/j.matdes.2013.12.039
8.
Tam
,
B.
,
Khan
,
M. I.
, and
Zhou
,
Y.
,
2011
, “
Mechanical and Functional Properties of Laser-Welded Ti-55.8 wt pct Ni Nitinol Wires
,”
Metall. Mater. Trans. A
,
42
(
8
), pp.
2166
2175
. 10.1007/s11661-011-0639-6
9.
Oliveira
,
J. P.
,
Braz Fernandes
,
F. M.
,
Miranda
,
R. M.
,
Schell
,
N.
, and
Ocaña
,
J. L.
,
2016
, “
Effect of Laser Welding Parameters on the Austenite and Martensite Phase Fractions of NiTi
,”
Mater. Charact.
,
119
, pp.
148
151
. 10.1016/j.matchar.2016.08.001
10.
Huang
,
H.
,
Chen
,
J.
,
Lim
,
Y. C.
,
Hu
,
X. H.
,
Cheng
,
J. H.
,
Feng
,
Z. L.
, and
Sun
,
X.
,
2019
, “
Heat Generation and Deformation in Ultrasonic Welding of Magnesium Alloy AZ31
,”
J. Mater. Process. Technol.
,
272
, pp.
125
136
. 10.1016/j.jmatprotec.2019.05.016
11.
Ao
,
S. S.
,
Li
,
C. J.
,
Zhang
,
W.
,
Wu
,
M. P.
,
Dai
,
Y.
,
Chen
,
Y.
, and
Luo
,
Z.
,
2019
, “
Microstructure Evolution and Mechanical Properties of Al/Cu Ultrasonic Spot Welded Joints During Thermal Processing
,”
J. Manuf. Processes
,
41
, pp.
307
314
. 10.1016/j.jmapro.2019.04.006
12.
Chen
,
J.
,
Lim
,
Y. C.
,
Huang
,
H.
,
Feng
,
Z. L.
, and
Sun
,
X.
,
2019
, “
Ultrasonic Welding of AZ31B Magnesium Alloy
,”
MRS Bull.
,
44
(
8
), pp.
630
636
. 10.1557/mrs.2019.182
13.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Luo
,
Z.
, and
Hao
,
Z. Z.
,
2018
, “
Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys
,”
Smart Mater. Struct.
,
27
(
8
), pp.
1
6
.
14.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Huang
,
Y. F.
, and
Luo
,
Z.
,
2018
, “
Microstructural Characterization and Mechanical Behavior of NiTi Shape Memory Alloys Ultrasonic Joints Using Cu Interlayer
,”
Materials
,
11
(
10
), pp.
1830
1843
. 10.3390/ma11101830
15.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Li
,
C. J.
,
Zeng
,
Z.
,
Wang
,
A. Q.
, and
Luo
,
Z.
,
2020
, “
On the Metallurgical Joining Mechanism During Ultrasonic Spot Welding of NiTi Using a Cu Interlayer
,”
Scr. Mater.
,
178
, pp.
414
417
. 10.1016/j.scriptamat.2019.12.012
16.
Kayaa
,
I.
,
Karacab
,
H. E.
,
Nagasakoc
,
M.
, and
Kainuma
,
R.
,
2020
, “
Effects of Aging Temperature and Aging Time on the Mechanism of Martensitic Transformation in Nickel-Rich NiTi Shape Memory Alloys
,”
Mater. Charact.
,
159
, p.
110034
. 10.1016/j.matchar.2019.110034
17.
Fuentes
,
J. M. G.
,
Gumpel
,
P.
, and
Strittmatter
,
J.
,
2002
, “
Phase Change Behavior of Nitinol Shape Memory Alloys—Influence of Heat and Thermomechanical Treatments
,”
Adv. Eng. Mater.
,
4
(
7
), pp.
437
451
. 10.1002/1527-2648(20020717)4:7<437::AID-ADEM437>3.0.CO;2-8
18.
Bruno
,
N. M.
,
Yegin
,
C.
,
Karaman
,
I.
,
Chen
,
J.-H.
,
Ross
,
J. H.
,
Liu
,
J.
, and
Li
,
J.
,
2014
, “
The Effect of Heat Treatments on Ni43Mn42Co4Sn11 Meta-Magnetic Shape Memory Alloys for Magnetic Refrigeration
,”
Acta Mater.
,
74
, pp.
66
84
. 10.1016/j.actamat.2014.03.020
19.
Vrsalovic
,
L.
,
Ivanic
,
I.
,
Kozuh
,
S.
,
Kosec
,
B.
,
Bizjak
,
M.
,
Kovac
,
J.
,
Gabor
,
U.
, and
Gojic
,
M.
,
2019
, “
Influence of Heat Treatment on the Corrosion Properties of CuAlMn Shape Memory Alloys
,”
Corros. Rev.
,
37
(
6
), pp.
579
589
. 10.1515/corrrev-2019-0034
20.
Chan
,
C. W.
,
Man
,
H. C.
, and
Yue
,
T. M.
,
2012
, “
Effect of Postweld Heat Treatment on the Microstructure and Cyclic Deformation Behavior of Laser-Welded NiTi-Shape Memory Wires
,”
Metall. Mater. Trans. A
,
43
(
6
), pp.
1956
1965
. 10.1007/s11661-011-1062-8
21.
Chan
,
C. W.
,
Man
,
H. C.
, and
Yue
,
T. M.
,
2011
, “
Effect of Post-Weld Heat-Treatment on the Oxide Film and Corrosion Behaviour of Laser-Welded Shape Memory NiTi Wires
,”
Corros. Sci.
,
56
, pp.
158
167
. 10.1016/j.corsci.2011.11.020
22.
Yan
,
X. J.
,
Yang
,
D. Z.
, and
Liu
,
X. P.
,
2007
, “
Influence of Heat Treatment on the Fatigue Life of a Laser-Welded NiTi Alloy Wire
,”
Mater. Charact.
,
58
(
3
), pp.
262
266
. 10.1016/j.matchar.2006.05.001
23.
Chan
,
C. W.
, and
Man
,
H. C.
,
2011
, “
Laser Welding of Thin Foil Nickel–Titanium Shape Memory Alloy
,”
Opt. Lasers Eng.
,
49
(
1
), pp.
121
126
. 10.1016/j.optlaseng.2010.08.007
24.
Chan
,
C. W.
, and
Man
,
H. C.
,
2013
, “
Reduction of Environmentally Induced Cracking of Laser-Welded Shape Memory NiTi Wires via Post-Weld Heat-Treatment
,”
Mater. Sci. Eng., A
,
588
, pp.
388
394
. 10.1016/j.msea.2013.09.051
25.
Mehrpouya
,
M.
,
Gisario
,
A.
, and
Elahinia
,
M.
,
2018
, “
Laser Welding of NiTi Shape Memory Alloy: A Review
,”
J. Manuf. Processes
,
31
, pp.
162
186
. 10.1016/j.jmapro.2017.11.011
26.
Chatterjee
,
S.
,
Abinandanan
,
T. A.
, and
Chattopadhyay
,
K.
,
2008
, “
Phase Formation in Ti/Ni Dissimilar Welds
,”
Mater. Sci. Eng., A
,
490
(
1–2
), pp.
7
15
. 10.1016/j.msea.2007.12.041
27.
Mehrpouya
,
M.
,
Gisario
,
A.
,
Barletta
,
M.
,
Natali
,
S.
, and
Veniali
,
F.
,
2019
, “
Dissimilar Laser Welding of NiTi Wires
,”
Lasers Manuf. Mater. Process.
,
6
(
2
), pp.
99
112
. 10.1007/s40516-019-00084-0
28.
Elahinia
,
M. H.
,
2016
,
Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation
,
John Wiley & Sons
,
Hoboken, NJ
.
29.
Saedi
,
S.
,
Turabi
,
A. S.
,
Andani
,
M.
,
Haberland
,
C.
,
Karaca
,
H.
, and
Elahinia
,
M.
,
2016
, “
The Influence of Heat Treatment on the Thermomechanical Response of Ni-Rich NiTi Alloys Manufactured by Selective Laser Melting
,”
J. Alloys Compd
,
677
, pp.
204
210
. 10.1016/j.jallcom.2016.03.161
30.
Wang
,
X. B.
,
Verlinden
,
B.
, and
Van Humbeeck
,
J.
,
2014
, “
R-Phase Transformation in NiTi Alloys
,”
Mater. Sci. Technol.
,
30
(
13A
), pp.
1517
1529
. 10.1179/1743284714Y.0000000590
31.
Silva
,
J. D.
,
Martins
,
S. C.
,
Lopes
,
N. I. D.
,
Resende
,
P. D.
,
Santos
,
L. A.
, and
Buono
,
V. T. L.
,
2019
, “
Effects of Aging Treatments on the Fatigue Resistance of Superelastic NiTi Wires
,”
Mater. Sci. Eng. A
,
756
, pp.
54
60
. 10.1016/j.msea.2019.04.037
32.
Helbert
,
G.
,
Saint-Sulpice
,
L.
,
Arbab Chirani
,
S.
,
Dieng
,
L.
,
Lecompte
,
T.
,
Calloch
,
S.
, and
Pilvin
,
P.
,
2014
, “
Experimental Characterisation of Three-Phase NiTi Wires Under Tension
,”
Mech. Mater.
,
79
, pp.
85
101
. 10.1016/j.mechmat.2014.07.020
33.
Duerig
,
T. W.
, and
Bhattacharya
,
K.
,
2015
, “
The Influence of the R-Phase on the Superelastic Behavior of NiTi
,”
Shape Memory Superelasticity
,
1
(
2
), pp.
153
161
. 10.1007/s40830-015-0013-4
34.
Zou
,
W. H.
,
Han
,
X. D.
,
Wang
,
R.
,
Zhang
,
Z.
,
Zhang
,
W. Z.
, and
Lai
,
J. K. L.
,
1996
, “
TEM and HREM Study of the Interphase Interface Structure of Ti3Ni4 Precipitates and Parent Phase in an Aged TiNi Shape Memory Alloy
,”
Mater. Sci. Eng., A
,
219
(
1–2
), pp.
142
147
. 10.1016/S0921-5093(96)10418-4
35.
Gall
,
K.
,
Juntunen
,
K.
,
Maier
,
H. J.
,
Sehitoglu
,
H.
, and
Chumlyakov
,
Y. I.
,
2001
, “
Instrumented Micro-Indentation of NiTi Shape Memory Alloys
,”
Acta Mater.
,
49
(
16
), pp.
3205
3217
. 10.1016/S1359-6454(01)00223-3
36.
Gall
,
K.
, and
Maier
,
H. J.
,
2002
, “
Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys
,”
Acta Mater
,
50
(
18
), pp.
4643
4657
. 10.1016/S1359-6454(02)00315-4
37.
Dlouhý
,
A.
,
Bojda
,
O.
,
Somsen
,
C.
, and
Eggeler
,
G.
,
2008
, “
Conventional and In-Situ Transmission Electron Microscopy Investigations Into Multistage Martensitic Transformations in Ni-Rich NiTi Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
481–482
, pp.
409
413
. 10.1016/j.msea.2007.04.123
38.
Jiang
,
S.
,
Zhao
,
Y.
,
Zhang
,
Y.
,
Hu
,
L.
, and
Liang
,
Y.
,
2013
, “
Effect of Solution Treatment and Aging on Microstructural Evolution and Mechanical Behavior of NiTi Shape Memory Alloy
,”
Trans. Nonferrous Metals Soc. China
,
23
(
12
), pp.
3658
3667
. 10.1016/S1003-6326(13)62914-3
39.
Hsu
,
C. J.
,
Chang
,
C. Y.
,
Kao
,
P. W.
,
Ho
,
N. J.
, and
Chang
,
C. P.
,
2006
, “
Al–Al3Ti Nanocomposites Produced in Situ by Friction Stir Processing
,”
Acta Mater.
,
54
(
19
), pp.
5241
5249
. 10.1016/j.actamat.2006.06.054
You do not currently have access to this content.