Abstract

Additive manufacturing (AM) technology enables a new way for fabricating components with complex internal surfaces. Selective laser melting (SLM), being one of the most common AM techniques, is able to fabricate complex geometries with superior material properties. However, due to the poor surface quality, the fabricated internal surfaces cannot meet the specifications for some real applications. To achieve the required internal surface condition, post-polishing process is essential. As one of the most prominent processes for finishing inaccessible surfaces with a wide range of materials, abrasive flow machining (AFM) shows great potential to polish AM internal surfaces. Hence, this paper presents an analytical and experimental study on the internal surface quality improvement of SLM Inconel 718 by AFM, aiming to verify the feasibility of AFM on internal surface quality improvement. The surface evolution process was modeled, and the effects of process parameters on surface and subsurface quality were evaluated. The results show that good surface roughness was obtained at the medium conditions of high viscosity, large particle size, low extrusion pressure, and low temperature. The surface morphology was greatly affected by the medium particle size which showed consistency with the surface evolution model that small abrasive particles are unable to overcome the width and depth of the valleys, resulting in the formation of craters. The partially melt layer was effectively removed, and no subsurface damage was induced.

References

References
1.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components-Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
. 10.1016/j.pmatsci.2017.10.001
2.
Huang
,
Y.
, and
Steven
,
R. S.
,
2018
, “
Additive Manufacturing for Health: State of the Art, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
094001
. 10.1115/1.4040430
3.
Bhardwaj
,
A.
,
Jones
,
S. Z.
,
Kalantar
,
N.
,
Pei
,
Z.
,
Vickers
,
J.
,
Wangler
,
T.
,
Zavattieri
,
P.
, and
Zou
,
N.
,
2019
, “
Additive Manufacturing Processes for Infrastructure Construction: A Review
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091010
. 10.1115/1.4044106
4.
Zolfaghari
,
A.
,
Chen
,
T. T.
, and
Yi
,
A. Y.
,
2019
, “
Additive Manufacturing of Precision Optics at Micro and Nanoscale
,”
Int. J. Extreme Manuf.
,
1
(
1
), p.
012005
. 10.1088/2631-7990/ab0fa5
5.
Wei
,
C.
,
Sun
,
Z.
,
Chen
,
Q.
,
Liu
,
Z.
, and
Li
,
L.
,
2019
, “
Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081014
. 10.1115/1.4043983
6.
Han
,
P.
,
2017
, “
Additive Design and Manufacturing of Jet Engine Parts
,”
Engineering
,
3
(
5
), pp.
648
652
. 10.1016/j.eng.2017.05.017
7.
Wang
,
Y.
, and
Hu
,
D.
,
2005
, “
Study on the Inner Surface Finishing of Tubing by Magnetic Abrasive Finishing
,”
Int. J. Mach. Tools Manuf
,
45
(
1
), pp.
43
49
. 10.1016/j.ijmachtools.2004.06.014
8.
Yamaguchi
,
H.
, and
Shinmura
,
T.
,
2004
, “
Internal Finishing Process for Alumina Ceramic Components by a Magnetic Field Assisted Finishing Process
,”
Precis. Eng.
,
28
(
2
), pp.
135
142
. 10.1016/j.precisioneng.2003.07.001
9.
Guo
,
J.
,
Au
,
K. H.
,
Sun
,
C. N.
,
Goh
,
M. H.
,
Kum
,
C. W.
,
Liu
,
K.
,
Wei
,
J.
,
Suzuki
,
H.
, and
Kang
,
R.
,
2018
, “
Novel Rotating-Vibrating Magnetic Abrasive Polishing Method for Double-Layered Internal Surface Finishing
,”
J. Mater. Process. Technol.
,
264
, pp.
422
437
. 10.1016/j.jmatprotec.2018.09.024
10.
Kim
,
J. D.
,
Kang
,
Y. H.
,
Bae
,
Y. H.
, and
Lee
,
S. W.
,
1997
, “
Development of a Magnetic Abrasive Jet Machining System for Precision Internal Polishing of Circular Tubes
,”
J. Mater. Process. Technol.
,
71
(
3
), pp.
384
393
. 10.1016/S0924-0136(97)00103-9
11.
Tiginyanu
,
I.
,
Topala
,
P.
, and
Ursaki
,
V.
,
2016
,
Nanostructures and Thin Films for Multifunctional Applications
,
Springer Nature
,
Switzerland
,
Chap. 18
.
12.
Loveless
,
T. R.
,
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1994
, “
A Study of the Effects of Abrasive—Flow Finishing on Various Machined Surfaces
,”
J. Mater. Process. Technol.
,
47
(
1
), pp.
133
151
. 10.1016/0924-0136(94)90091-4
13.
Jain
,
R. K.
, and
Jain
,
V. K.
,
2004
, “
Stochastic Simulation of Active Grain Density in Abrasive Flow Machining
,”
J. Mater. Process. Technol.
,
152
(
1
), pp.
17
22
. 10.1016/j.jmatprotec.2003.11.024
14.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2004
, “
Experimental Investigation into Cutting Forces and Active Grain Density During Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf
,
44
(
2
), pp.
201
211
. 10.1016/j.ijmachtools.2003.10.004
15.
Uhlmann
,
E.
,
Mihotovic
,
V.
, and
Coenen
,
A.
,
2009
, “
Modelling the Abrasive Flow Machining Process on Advanced Ceramic Materials
,”
J. Mater. Process. Technol.
,
209
(
20
), pp.
6062
6066
. 10.1016/j.jmatprotec.2009.06.019
16.
Wei
,
H. B.
,
Wang
,
X. P.
,
Gao
,
H.
,
Peng
,
C.
, and
Wang
,
X. Y.
,
2019
, “
A Study on the Influences of Abrasive Media's Viscoelasticity on Entrance Effect in Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061010
. 10.1115/1.4043454
17.
Jain
,
R. K.
, and
Vijay
,
K.
,
2000
, “
Optimum Selection of Machining Conditions in Abrasive Flow Machining Using Neural Network
,”
J. Mater. Process. Technol.
,
108
(
1
), pp.
62
67
. 10.1016/S0924-0136(00)00621-X
18.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1903
1923
. 10.1016/S0890-6955(99)00038-3
19.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1992
, “
Stochastic Modeling and Analysis of Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
114
(
1
), pp.
74
81
. 10.1115/1.2899761
20.
Cheng
,
K.
,
Shao
,
Y.
,
Bodenhorst
,
R.
, and
Jadva
,
M.
,
2017
, “
Modeling and Simulation of Material Removal Rates and Profile Accuracy Control in Abrasive Flow Machining of the Integrally Bladed Rotor Blade and Experimental Perspectives
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121020
. 10.1115/1.4038027
21.
Sato
,
T.
,
Wan
,
S.
, and
Ang
,
Y. S.
,
2013
, “
Study of Process Characteristics of Abrasive Flow Machining (AFM) for Ti-6Al-4V and Validation With Process Model
,”
Adv. Mater. Res.
,
797
, pp.
411
416
. 10.4028/www.scientific.net/AMR.797.411
22.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
, “
Prediction of Surface Roughness During Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
31
(
3–4
), pp.
258
267
. 10.1007/s00170-005-0197-4
23.
Cheng
,
K.
,
2013
,
Micro Cutting: Fundamentals and Applications
,
John Wiley & Sons, Ltd
,
West Sussex, UK
,
Chap. 6
.
24.
Howard
,
M.
, and
Cheng
,
K.
,
2014
, “
An Integrated Systematic Investigation of the Process Variables on Surface Generation in Abrasive Flow Machining (AFM) of Titanium Alloy 6Al4V
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
228
(
11
), pp.
1419
1431
. 10.1177/0954405414522210
25.
Shao
,
Y. Z.
, and
Cheng
,
K.
,
2019
, “
Integrated Modelling and Analysis of Micro-Cutting Mechanics With the Precision Surface Generation in Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4571
4583
. 10.1007/s00170-019-03595-4
26.
Fu
,
Y. Z.
,
Gao
,
H.
,
Yan
,
Q. S.
, and
Wang
,
X. Y.
,
2019
, “
A New Predictive Method of the Finished Surface Profile in Abrasive Flow Machining Process
,”
Precis. Eng.
,
60
, pp.
497
505
. 10.1016/j.precisioneng.2019.08.011
27.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
, “
Forces Prediction During Material Deformation in Abrasive Flow Machining
,”
Wear
,
260
(
1–2
), pp.
128
139
. 10.1016/j.wear.2004.12.038
28.
Wei
,
H. B.
,
Peng
,
C.
,
Gao
,
H.
,
Wang
,
X. P.
, and
Wang
,
X. Y.
,
2019
, “
On Establishment and Validation of a New Predictive Model for Material Removal in Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
138
, pp.
66
79
. 10.1016/j.ijmachtools.2018.12.003
29.
Sankar
,
M. R.
,
Ramkumar
,
J.
, and
Jain
,
V. K.
,
2009
, “
Experimental Investigation and Mechanism of Material Removal in Nano Finishing of MMCS Using Abrasive Flow Finishing (AFF) Process
,”
Wear
,
266
(
7
), pp.
688
698
. 10.1016/j.wear.2008.08.017
30.
Baufeld
,
B.
,
2012
, “
Mechanical Properties of INCONEL 718 Parts Manufactured by Shaped Metal Deposition (SMD)
,”
J. Mater. Eng. Perform.
,
21
(
7
), pp.
1416
1421
. 10.1007/s11665-011-0009-y
31.
Raghavan
,
S.
,
Zhang
,
B.
,
Wang
,
P.
,
Sun
,
C. N.
,
Nai
,
M. L. S.
,
Li
,
T.
, and
Wei
,
J.
,
2017
, “
Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy
,”
Mater. Manuf. Processes
,
32
(
14
), pp.
1588
1595
. 10.1080/10426914.2016.1257805
You do not currently have access to this content.