Abstract

The master sinter curve (MSC) is an empirical model used to predict the density of a part after being sintered. The model is typically applied to components that undergo isotropic shrinkage. Parts manufactured using binder jetting additive manufacturing (BJAM) are known to have nonuniform powder systems and high levels of anisotropy. This work explores the application of the master sinter curve to components made by BJAM. Cylindrical samples were manufactured with the long axis parallel (vertical), perpendicular (horizontal), and 45 deg to the printing direction. A bimodal blend of titanium powder (0–45  µm and 106–150 µm) was used to make samples with consistent green densities (ranging from 47.2% to 52.3%) between the different orientations. Samples were then sintered at heating rates of 1, 3, and 5 °C/min to a maximum of 1400 °C. After sintering, the samples showed significant variation between the different orientations, with vertical samples on average 7.6 ± 2.98% and 4.7 ± 1.20% denser than the horizontal and the 45 deg samples, respectively. The calculated apparent activation energies for sintering were within the same range for all orientations, 200–260 kJ/mol for vertical and 45 deg, and 140–260 kJ/mol for horizontal samples. Validation sinter runs showed that the density prediction errors of the master sinter curves were between 0.9% and 4.3%. This work shows that the master sinter curve can be applied to predict the sintered density of components manufactured by binder jetting additive manufacturing.

References

References
1.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2012
, “
Analyzing Product Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing
,”
23rd Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
177
188
.
2.
Doyle
,
M.
,
Agarwal
,
K.
,
Sealy
,
W.
, and
Schull
,
K.
,
2015
, “
Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420+Bronze Parts
,”
Procedia Manuf.
,
1
, pp.
251
262
. 10.1016/j.promfg.2015.09.016
3.
ASTM
,
2015
, “
52900:2015-Standard Terminology for Additive Manufacturing—General Principles—Terminology
,”
ASTM International
,
i
, pp.
1
9
.
4.
Huang
,
Y.
, and
Schmid
,
S. R.
,
2018
, “
Additive Manufacturing for Health: State of the Art, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
094001
. 10.1115/1.4040430
5.
Farzadi
,
A.
,
Solati-Hashjin
,
M.
,
Asadi-Eydivand
,
M.
, and
Osman
,
N. A. A.
,
2014
, “
Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering
,”
PLoS One
,
9
(
9
), p.
e108252
. 10.1371/journal.pone.0108252
6.
Xu
,
X.
,
Meteyer
,
S.
,
Perry
,
N.
, and
Zhao
,
Y. F.
,
2015
, “
Energy Consumption Model of Binder-Jetting Additive Manufacturing Processes
,”
Int. J. Prod. Res.
,
53
(
23
), pp.
7005
7015
. 10.1080/00207543.2014.937013
7.
Sachs
,
E.
,
Allen
,
S.
,
Cima
,
M.
,
Wylonis
,
E.
, and
Gu
,
H.
,
2000
, “
Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process
,”
Polym. Eng. Sci.
,
40
(
5
), pp.
1232
1247
. 10.1002/pen.11251
8.
Ziaee
,
M.
,
Tridas
,
E. M.
, and
Crane
,
N. B.
,
2017
, “
Binder-Jet Printing of Fine Stainless Steel Powder With Varied Final Density
,”
JOM
,
69
(
3
), pp.
592
596
. 10.1007/s11837-016-2177-6
9.
Shrestha
,
S.
, and
Manogharan
,
G.
,
2017
, “
Optimization of Binder Jetting Using Taguchi Method
,”
JOM
,
69
(
3
), pp.
491
497
. 10.1007/s11837-016-2231-4
10.
Zhang
,
B.
,
Zhan
,
Z.
,
Cao
,
Y.
,
Gulan
,
H.
,
Linner
,
P.
,
Sun
,
J.
,
Zwick
,
T.
, and
Zirath
,
H.
,
2016
, “
Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications
,”
IEEE Trans. Terahertz Sci. Technol.
,
6
(
4
), pp.
592
600
. 10.1109/TTHZ.2016.2562508
11.
Do
,
T.
,
Kwon
,
P.
, and
Shin
,
C. S.
,
2017
, “
Process Development Toward Full-Density Stainless Steel Parts With Binder Jetting Printing
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
50
60
. 10.1016/j.ijmachtools.2017.04.006
12.
Kernan
,
B. D.
,
Sachs
,
E. M.
,
Oliveira
,
M. A.
, and
Cima
,
M. J.
,
2007
, “
Three-Dimensional Printing of Tungsten Carbide–10wt% Cobalt Using a Cobalt Oxide Precursor
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
1
), pp.
82
94
. 10.1016/j.ijrmhm.2006.02.002
13.
Mostafaei
,
A.
,
Toman
,
J.
,
Stevens
,
E. L.
,
Hughes
,
E. T.
,
Krimer
,
Y. L.
, and
Chmielus
,
M.
,
2017
, “
Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder jet Printed Samples From Gas- and Water-Atomized Alloy 625 Powders
,”
Acta Mater.
,
124
, pp.
280
289
. 10.1016/j.actamat.2016.11.021
14.
Li
,
L.
,
Post
,
B.
,
Kunc
,
V.
,
Elliott
,
A. M.
, and
Paranthaman
,
M. P.
,
2017
, “
Additive Manufacturing of Near-Net-Shape Bonded Magnets: Prospects and Challenges
,”
Scr. Mater.
,
135
, pp.
100
104
. 10.1016/j.scriptamat.2016.12.035
15.
Paranthaman
,
M. P.
,
Shafer
,
C. S.
,
Elliott
,
A. M.
,
Siddel
,
D. H.
,
McGuire
,
M. A.
,
Springfield
,
R. M.
,
Martin
,
J.
,
Fredette
,
R.
, and
Ormerod
,
J.
,
2016
, “
Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process
,”
JOM
,
68
(
7
), pp.
1978
1982
. 10.1007/s11837-016-1883-4
16.
Basalah
,
A.
,
Shanjani
,
Y.
,
Esmaeili
,
S.
, and
Toyserkani
,
E.
,
2012
, “
Characterizations of Additive Manufactured Porous Titanium Implants
,”
J. Biomed. Mater. Res., Part B
,
100B
(
7
), pp.
1970
1979
. 10.1002/jbm.b.32764
17.
Sheydaeian
,
E.
, and
Toyserkani
,
E.
,
2017
, “
A System for Selectively Encapsulating Porogens Inside the Layers During Additive Manufacturing: From Conceptual Design to the First Prototype
,”
J. Manuf. Process.
,
26
, pp.
330
338
. 10.1016/j.jmapro.2017.03.001
18.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
. 10.1108/RPJ-12-2014-0180
19.
Mostafaei
,
A.
,
Behnamian
,
Y.
,
Krimer
,
Y. L.
,
Stevens
,
E. L.
,
Luo
,
J. L.
, and
Chmielus
,
M.
,
2016
, “
Effect of Solutionizing and Aging on the Microstructure and Mechanical Properties of Powder Bed Binder Jet Printed Nickel-Based Superalloy 625
,”
Mater. Des.
,
111
, pp.
482
491
. 10.1016/j.matdes.2016.08.083
20.
Mostafaei
,
A.
,
Stevens
,
E. L.
,
Hughes
,
E. T.
,
Biery
,
S. D.
,
Hilla
,
C.
, and
Chmielus
,
M.
,
2016
, “
Powder Bed Binder Jet Printed Alloy 625: Densification, Microstructure and Mechanical Properties
,”
Mater. Des.
,
108
, pp.
126
135
. 10.1016/j.matdes.2016.06.067
21.
Stoyanov
,
P.
,
Andre
,
K.
,
Prichard
,
P.
,
Yao
,
M.
, and
Gey
,
C.
,
2016
, “
Microstructural and Mechanical Characterization of Mo-Containing Stellite Alloys Produced by Three Dimensional Printing
,”
Procedia CIRP
,
45
, pp.
167
170
. 10.1016/j.procir.2016.02.358
22.
Su
,
H.
, and
Johnson
,
L. D.
,
1996
, “
Master Sintering Curve—A Practical Approach to Sintering
,”
J. Am. Ceram. Soc.
,
79
(
12
), pp.
3211
3217
.
23.
Eylon
,
D.
, and
Sam Froes
,
F. H.
,
1990
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
ASM International
,
Ohio, USA
, pp.
647
660
.
24.
Lütjering
,
G.
,
Williams
,
J. C. C.
,
Lütjering
,
G.
, and
Williams
,
J. C. C.
,
2007
,
Titanium
, 2nd ed.,
Springer
,
New York
.
25.
Narayan
,
R.
,
2012
,
ASM Handbook; Materials for Medical Devices; v.23
, vol.
27
, no.
5
,
Ringgold Inc.
,
Portland
.
26.
Veiga
,
C.
,
Davim
,
J.
, and
Loureiro
,
A.
,
2012
, “
Properties and Applications of Titanium Alloys: A Brief Review
,”
Rev. Adv. Mater. Sci.
,
32
(
2
), pp.
133
148
.
27.
Bai
,
Y.
,
Wall
,
C.
,
Pham
,
H.
,
Esker
,
A.
, and
Williams
,
C. B.
,
2019
, “
Characterizing Binder–Powder Interaction in Binder Jetting Additive Manufacturing Via Sessile Drop Goniometry
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), pp.
1
11
.
28.
Kang
,
S.-J. L.
,
2004
,
Sintering: Densification, Grain Growth and Microstructure
,
Elsevier
,
New York
.
29.
Wheat
,
E.
,
Vlasea
,
M.
,
Hinebaugh
,
J.
, and
Metcalfe
,
C.
,
2018
, “
Sinter Structure Analysis of Titanium Structures Fabricated Via Binder Jetting Additive Manufacturing
,”
Mater. Des.
,
20
, pp.
167
183
. 10.1016/j.matdes.2018.06.038
30.
Gregorski
,
S. J.
,
1996
, “
High Green Density Metal Parts by Vibrational Compaction of Dry Powder in Three Dimensional Printing Process
,” Ph.D thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
31.
Ye
,
X.
,
Li
,
Y.
,
Ai
,
Y.
, and
Nie
,
Y.
,
2018
, “
Novel Powder Packing Theory With Bimodal Particle Size Distribution-Application in Superalloy
,”
Adv. Powder Technol.
,
29
(
9
), pp.
2280
2287
. 10.1016/j.apt.2018.06.012
32.
Du
,
W.
,
Ren
,
X.
,
Chen
,
Y.
,
Ma
,
C.
,
Radovic
,
M.
, and
Pei
,
Z.
,
2018
, “
Model Guided Mixing of Ceramic Powders With Graded Particle Sizes in Binder Jetting Additive Manufacturing
,”
13th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
,
Austin, TX
,
June 18–22
, p. V001T01A014.
33.
Hansen
,
J. D.
,
Rusin
,
R. P.
,
Teng
,
M. H.
, and
Johnson
,
D. L.
,
1992
, “
Combined-Stage Sintering Model
,”
J. Am. Ceram. Soc.
,
75
(
5
), pp.
1129
1135
. 10.1111/j.1151-2916.1992.tb05549.x
34.
Blaine
,
D. C.
,
Gurosik
,
J. D.
,
Park
,
S. J.
,
German
,
R. M.
, and
Heaney
,
D. F.
,
2006
, “
Master Sintering Curve Concepts as Applied to the Sintering of Molybdenum
,”
Metall. Mater. Trans. A
,
37
(
3
), pp.
715
720
. 10.1007/s11661-006-0043-9
35.
An
,
K.
, and
Han
,
M. K.
,
2005
, “
Microstructural Evolution Based on the Pressure-Assisted Master Sintering Surface
,”
Mater. Sci. Eng. A
,
391
(
1–2
), pp.
66
70
. 10.1016/j.msea.2004.08.055
36.
Robertson
,
I. M. M.
, and
Schaffer
,
G. B. B.
,
2009
, “
Some Effects of Particle Size on the Sintering of Titanium and a Master Sintering Curve Model
,”
Metall. Mater. Trans. A
,
40
(
8
), pp.
1968
1979
. 10.1007/s11661-009-9894-1
37.
Robertson
,
I. M.
, and
Schaffer
,
G. B.
,
2010
, “
Refinement of Master Densification Curves for Sintering of Titanium
,”
Metall. Mater. Trans. A
,
41
(
11
), pp.
2949
2958
. 10.1007/s11661-010-0290-7
38.
Jansson
,
A.
, and
Edholm
,
O.
,
2016
, “
Scale Factor and Shrinkage in Additive Manufacturing Using Binder Jetting
,” thesis,
Stockholm
.
39.
Wang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process
,”
Procedia Manuf.
,
10
, pp.
779
790
. 10.1016/j.promfg.2017.07.077
40.
Mirzababaei
,
S.
, and
Pasebani
,
S.
,
2019
, “
A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel
,”
J. Manuf. Mater. Process.
,
3
(
3
), p.
82
.
41.
Diantonio
,
C. B.
, and
Ewsuk
,
K. G.
,
2010
, “Master Sintering Curve and Its Application in Sintering of Electronic Ceramics,”
Sintering of Advanced Materials
,
Elsevier
, pp.
130
161
.
42.
Frueh
,
T.
,
Ozer
,
I. O.
,
Poterala
,
S. F.
,
Lee
,
H.
,
Kupp
,
E. R.
,
Compson
,
C.
,
Atria
,
J.
, and
Messing
,
G. L.
,
2018
, “
A Critique of Master Sintering Curve Analysis
,”
J. Eur. Ceram. Soc.
,
38
(
4
), pp.
1030
1037
. 10.1016/j.jeurceramsoc.2017.12.025
43.
Brandt
,
B.
,
Naghib-Zadeh
,
H.
,
Rabe
,
T.
, and
Blendell
,
J.
,
2013
, “
Improved Co-Firing of Ferrite and Dielectric Tape Based on Master Sintering Curve Predictions and Shrinkage Mismatch Calculations
,”
J. Am. Ceram. Soc.
,
96
(
3
), pp.
726
730
. 10.1111/jace.12179
44.
Raether
,
F.
, and
Schulze Horn
,
P.
,
2009
, “
Investigation of Sintering Mechanisms of Alumina Using Kinetic Field and Master Sintering Diagrams
,”
J. Eur. Ceram. Soc.
,
29
(
11
), pp.
2225
2234
. 10.1016/j.jeurceramsoc.2009.01.025
45.
Marković
,
S.
, and
Uskoković
,
D.
,
2009
, “
The Master Sintering Curves for BaTi0.975Sn0.025O3/BaTi0.85S n0.15O3 Functionally Graded Materials
,”
J. Eur. Ceram. Soc.
,
29
(
11
), pp.
2309
2316
. 10.1016/j.jeurceramsoc.2009.01.027
46.
Garg
,
P.
,
Park
,
S. J.
, and
German
,
R. M.
,
2007
, “
Effect of Die Compaction Pressure on Densification Behavior of Molybdenum Powders
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
1
), pp.
16
24
. 10.1016/j.ijrmhm.2005.10.014
47.
Abbasian
,
A. R.
,
Rahimipour
,
M. R.
, and
Hamnabard
,
Z.
,
2014
, “
Activation Energies for Initial and Intermediate Stage Sintering of Li2TiO3 Determined by a Two-Stage Master Sintering Curve Approach
,”
2014 International Conference on Civil Engineering
,
Santorini Island, Greece
,
July 17–21
, pp.
3
8
.
48.
Ni
,
D. W.
,
Esposito
,
V.
,
Foghmoes
,
S. P. V.
, and
Ramousse
,
S.
,
2014
, “
Densification and Grain Growth Kinetics of Ce0.9Gd0.1O1.95 in Tape Cast Layers: The Influence of Porosity
,”
J. Eur. Ceram. Soc.
,
34
(
10
), pp.
2371
2379
. 10.1016/j.jeurceramsoc.2014.02.039
49.
Plessis
,
A.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
, and
Le Roux
,
S. G.
,
2018
, “
X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications
,”
5
(
3
), pp.
227
247
.
50.
Basalah
,
A.
, “
Additive Manufacturing of Porous Titanium Structures for Use in Orthopaedic Implants
,” UWSpace,
2015
.
51.
Miyanaji
,
H.
,
2018
, “
Binder Jetting Additive Manufacturing Process Fundamentals and the Resultant Influences on Part Quality
,” Electronic Theses and Dissertations, Paper 3058,
University of Louisville
.
52.
Robertson
,
I. M.
, and
Schaffer
,
G. B.
,
2010
, “
Comparison of Sintering of Titanium and Titanium Hydride Powders
,”
Powder Metall.
,
53
(
1
), pp.
12
19
. 10.1179/003258909X12450768327063
53.
Blaine
,
D. C.
,
Park
,
S. J.
,
Suri
,
P.
, and
German
,
R. M.
,
2006
, “
Application of Work-of-Sintering Concepts in Powder Metals
,”
Metall. Mater. Trans. A
,
37
(
9
), pp.
2827
2835
. 10.1007/BF02586115
54.
Liu
,
Z. Y.
,
Loh
,
N. H.
,
Khor
,
K. A.
, and
Tor
,
S. B.
,
2001
, “
Sintering Activation Energy of Powder Injection Molded 316L Stainless Steel
,”
Scr. Mater.
,
44
(
7
), pp.
1131
1137
. 10.1016/S1359-6462(01)00664-9
55.
Park
,
D. Y.
,
Lee
,
S. W.
,
Park
,
S. J.
,
Kwon
,
Y. S.
, and
Otsuka
,
I.
,
2013
, “
Effects of Particle Sizes on Sintering Behavior of 316L Stainless Steel Powder
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1508
1518
. 10.1007/s11661-012-1477-x
56.
German
,
R. M.
,
1992
, “
Sintering Densification for Powder Mixtures of Varying Distribution Widths
,”
Acta Metall. Mater.
,
40
(
9
), pp.
2085
2089
. 10.1016/0956-7151(92)90125-X
You do not currently have access to this content.