Abstract

Rotary ultrasonic machining (RUM) is an effective solution to cut, grind, or drill the advanced brittle hard materials. Contactless rotary transformer, with the advantages of high-power transmission efficiency and reliability, is a potential structure to transmit electric power in RUM. In this study, an impedance model of rotary ultrasonic holder (RUH) is established to find that there exist deviations for the resonant frequency and impedance between the RUH and the ultrasonic transducer, indicating that without compensation the ultrasonic transducer cannot find precisely its own resonant frequency by sweeping frequency. To match the resonant frequency and impedance, four compensation topologies are compared and the Series-Series (SS) topology is discovered as the most suitable option. The compensated capacitance values are determined by visualized solution from the contour line method. Both simulation (from matlab–simulink) and experimental results validate that with compensation elements, the resonant frequency and impedance can be matched precisely between the RUH and ultrasonic transducer and the output voltage and current are with better dynamic performance. Moreover, with the same input voltage, the received power of ultrasonic transducer with compensation capacitors is 7.4 times than the one without compensation. Results verify that the compensation optimization of contactless rotary transformer can improve the vibration amplitude in RUM.

References

1.
Wang
,
J.
,
Zhang
,
J.
,
Feng
,
P.
,
Guo
,
P.
, and
Zhang
,
Q.
,
2018
, “
Feasibility Study of Longitudinal–Torsional-Coupled Rotary Ultrasonic Machining of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051008
. 10.1115/1.4038728
2.
Jiao
,
Y.
,
Liu
,
W. J.
,
Pei
,
Z. J.
,
Xin
,
X. J.
, and
Treadwell
,
C.
,
2005
, “
Study on Edge Chipping in Rotary Ultrasonic Machining of Ceramics: An Integration of Designed Experiments and Finite Element Method Analysis
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
752
758
. 10.1115/1.2034511
3.
Wang
,
H.
,
Lawrence Yao
,
Y.
, and
Chen
,
H.
,
2015
, “
Removal Mechanism and Defect Characterization for Glass-Side Laser Scribing of CdTe/CdS Multilayer in Solar Cells
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061006
. 10.1115/1.4030935
4.
Li
,
S.
,
Wu
,
Y.
,
Nomura
,
M.
, and
Fujii
,
T.
,
2018
, “
Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti–6Al–4 V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071009
. 10.1115/1.4039855
5.
Wang
,
Q.
,
Cong
,
W.
,
Pei
,
Z. J.
,
Gao
,
H.
, and
Kang
,
R.
,
2009
, “
Rotary Ultrasonic Machining of Potassium Dihydrogen Phosphate (KDP) Crystal: An Experimental Investigation
,”
J. Manuf. Process.
,
11
(
2
), pp.
66
73
. 10.1016/j.jmapro.2009.09.001
6.
Janghorbanian
,
J.
,
Razfar
,
M. R.
, and
Abootorabi Zarchi
,
M. M.
,
2013
, “
Effect of Cutting Speed on Tool Life in Ultrasonic-Assisted Milling Process
,”
Proc. Inst. Mech. Eng. Part B: J Eng. Manuf.
,
227
(
8
), pp.
1157
1164
. 10.1177/0954405413483722
7.
Bhosale
,
S. B.
,
Pawade
,
R. S.
, and
Brahmankar
,
P. K.
,
2014
, “
Effect of Process Parameters on MRR, TWR and Surface Topography in Ultrasonic Machining of Alumina–Zirconia Ceramic Composite
,”
Ceram. Int.
,
40
(
8
), pp.
12831
12836
. 10.1016/j.ceramint.2014.04.137
8.
Hossein
,
P.
, and
Saeid
,
A.
,
2018
, “
Experiments and Finite Element Simulation of Ultrasonic Assisted Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101002
. 10.1115/1.4040321
9.
Moghaddas
,
M. A.
,
Short
,
M. A.
,
Wiley
,
N. R.
,
Yi
,
A. Y.
, and
Graff
,
K. F.
,
2018
, “
Improving Productivity in an Ultrasonic-Assisted Drilling Vertical Machining Center
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061002
. 10.1115/1.4039109
10.
Zvoncan
,
M.
,
Beno
,
M.
,
Kovac
,
M.
, and
Peterka
,
J.
,
2012
, “
Cross Section of Machined Layer for Rotary Ultrasonic Machining With a Hollow Drill
,”
Manuf. Indus. Eng.
,
11
(
3
), pp.
11
13
.
11.
Singh
,
R. P.
, and
Singhal
,
S.
,
2016
, “
Rotary Ultrasonic Machining: A Review
,”
Adv. Manuf. Process.
,
31
(
14
), pp.
1795
1824
. 10.1080/10426914.2016.1140188
12.
Li
,
Z. C.
,
Jiao
,
Y.
,
Deines
,
T. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2005
, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
45
(
12
), pp.
1402
1411
.
13.
Ning
,
F.
,
Hu
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Cong
,
W.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
061012
. 10.1115/1.4039441
14.
Swain
,
A. K.
,
Devarakonda
,
S.
, and
Madawala
,
U. K.
,
2014
, “
Modeling, Sensitivity Analysis, and Controller Synthesis of Multipickup Bidirectional Inductive Power Transfer Systems
,”
IEEE Trans. Ind. Inform.
,
10
(
2
), pp.
1372
1380
. 10.1109/TII.2014.2307159
15.
Bieler
,
T.
,
Perrottet
,
M.
,
Nguyen
,
V.
, and
Perriard
,
Y.
,
2002
, “
Contactless Power and Information Transmission
,”
IEEE Trans. Ind. Appl.
,
38
(
5
), pp.
1266
1277
. 10.1109/TIA.2002.803017
16.
Lin
,
R. L.
,
Tsai
,
C. H.
, and
Chen
,
N. C.
,
2017
, “
Design and Implementation of Ferroresonant Transformer for LED Driver Systems
,”
IEEE Trans. Ind. Appl.
,
53
(
6
), pp.
1643
1651
.
17.
Wang
,
C. S.
,
Covic
,
G. A.
, and
Stielau
,
O. H.
,
2004
, “
Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems
,”
IEEE Trans. Ind. Electron.
,
51
(
1
), pp.
148
157
. 10.1109/TIE.2003.822038
18.
Ni
,
W.
,
Collings
,
I. B.
,
Wang
,
X.
,
Liu
,
R. P.
,
Kajan
,
A.
,
Hedley
,
M.
, and
Abolhasan
,
M.
,
2015
, “
Radio Alignment for Inductive Charging of Electric Vehicles
,”
IEEE Trans. Ind. Inform.
,
11
(
2
), pp.
427
440
. 10.1109/TII.2015.2400925
19.
Hu
,
A. P.
,
Liu
,
C.
, and
Li
,
H. L.
,
2008
, “
A Novel Contactless Battery Charging System for Soccer Playing Robot
,”
IEEE Conference on Mechatronics and Machine Vision in Practice
,
Auckland, New Zealand
,
Dec. 2–4
, pp.
646
650
.
20.
Meyer
,
P.
,
Germano
,
P.
,
Markovic
,
M.
, and
Perriard
,
Y.
,
2011
, “
Design of a Contactless Energy-Transfer System for Desktop Peripherals
,”
IEEE Trans. Ind. Appl.
,
47
(
4
), pp.
5978
5987
. 10.1109/TIA.2011.2153812
21.
Zhang
,
H.
,
Wang
,
F.
,
Zhang
,
D.
,
Hou
,
Y.
, and
Xi
,
T.
,
2015
, “
A New Automatic Resonant Frequency Tracking Method for Piezoelectric Ultrasonic Transducers Used in Thermosonic Wire Bonding
,”
Sens. Actuat. A Phys.
,
235
(
1
), pp.
140
150
. 10.1016/j.sna.2015.09.040
22.
Zhu
,
X.
,
Lin
,
B.
, and
Liu
,
L.
,
2015
, “
Efficiency-based Compensations and the Mechanical Load Dependencies of Rotary Transformer for Rotary Ultrasonic Machining Applications
,”
IET Power Electron.
,
8
(
6
), pp.
986
993
. 10.1049/iet-pel.2014.0253
23.
Luan
,
Y.
,
Lin
,
B.
,
Ma
,
X.
, and
Zhu
,
X.
,
2017
, “
Innovative Contactless Energy Transfer Accessory for Rotary Ultrasonic Machining and Its Circuit Compensation Based on Coil Turns
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
7810
7818
. 10.1109/TIE.2017.2696504
24.
Chopra
,
S.
, and
Bauer
,
P.
,
2011
, “
Analysis and Design Considerations for a Contactless Power Transfer System
,”
IEEE Telecommunications Energy Conference
,
Amsterdam, Netherlands
,
Oct. 9–13
, pp.
1
6
.
25.
Jiang
,
X.
,
Wang
,
K.
,
Shao
,
R.
,
Mills
,
J. K.
, and
Zhang
,
D.
,
2018
, “
Self-Compensation Theory and Design of Contactless Energy Transfer and Vibration System for Rotary Ultrasonic Machining
,”
IEEE Trans. Power Electron.
,
33
(
10
), pp.
8650
8660
.
26.
Zhang
,
W.
,
Wong
,
S. C.
,
Chi
,
K. T.
, and
Chen
,
Q.
,
2013
, “
Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems
,”
IEEE Trans. on Power Electron.
,
29
(
1
), pp.
191
200
. 10.1109/TPEL.2013.2249112
27.
Long
,
Z.
,
Lin
,
X.
,
Yuan
,
W.
, and
Zhang
,
J.
,
2013
, “
Modeling on a Non-Contact Power Transmission System in Ultrasonic Machining
,”
IEEE International Conference on Robotics and Biomimetics
,
Shenzhen, China
,
Dec. 12–14
, pp.
1042
1047
.
28.
Mathieson
,
A.
,
Cardoni
,
A.
,
Harkness
,
P.
, and
Lucas
,
M.
,
2009
, “
Characterisation of Nonlinear Behaviour of Power Ultrasonic Drilling Horns
,”
IEEE International Ultrasonics Symposium
,
Rome, Italy
,
Sept. 20–23
, pp.
2092
2095
.
29.
Kim
,
Y. H.
, and
Jin
,
K. H.
,
2011
, “
Design and Implementation of a Rectangular-Type Contactless Transformer
,”
IEEE Trans. Ind. Electron.
,
58
(
12
), pp.
5380
5384
. 10.1109/TIE.2011.2130490
You do not currently have access to this content.