Abstract
Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure, and advanced mechanical properties of these materials associated with the size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface quality, and high rate of tool wear. In part 1 of this two-part review paper, a comprehensive review on mechanical properties of various nanocomposites will be presented while the second part of the paper will focus on the micro-machinability of these nanocomposite materials.
Issue Section:
Review Article
References
1.
Blumstein
, A.
, 1961
, “Étude des polymérisations en couche adsorbée
,” Bulletin de la Societe Chimique de France
, 5
, pp. 899
–906
.2.
Blumstein
, A.
, 1965
, “Polymerization of Adsorbed Monolayers. II. Thermal Degradation of the Inserted Polymer
,” J. Polym. Sci. Part A: Gen. Pap.
, 3
(7
), pp. 2665
–2672
. 10.1002/pol.1965.1000307213.
Arora
, I.
, Samuel
, J.
, and Koratkar
, N.
, 2013
, “Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,” ASME J. Manuf. Sci. Eng.
, 135
(4
), p. 041007
. 10.1115/1.40248144.
Njuguna
, J.
, and Pielichowski
, K.
, 2003
, “Polymer Nanocomposites for Aerospace Applications: Properties
,” Adv. Eng. Mater.
, 5
(11
), pp. 769
–778
.5.
Garces
, J. M.
, Moll
, D. J.
, Bicerano
, J.
, Fibiger
, R.
, and McLeod
, D. G.
, 2000
, “Polymeric Nanocomposites for Automotive Applications
,” Adv. Mater.
, 12
(23
), pp. 1835
–1839
.6.
Feldman
, D.
, 2016
, “Polymer Nanocomposites in Medicine
,” J. Macromol. Sci., Part A
, 53
(1
), pp. 55
–62
. 10.1080/10601325.2016.11104597.
Dinca
, I.
, Ban
, C.
, Stefan
, A.
, and Pelin
, G.
, 2012
, “Nanocomposites as Advanced Materials for Aerospace Industry
,” Incas Bull.
, 4
(3
), p. 73
–86
. 10.13111/2066-8201.2012.4.3.78.
Leszczyńska
, A.
, Njuguna
, J.
, Pielichowski
, K.
, and Banerjee
, J.
, 2007
, “Polymer/Montmorillonite Nanocomposites With Improved Thermal Properties: Part I. Factors Influencing Thermal Stability and Mechanisms of Thermal Stability Improvement
,” Thermochim. Acta
, 453
(2
), pp. 75
–96
. 10.1016/j.tca.2006.11.0029.
Bai
, J.
, and Allaoui
, A.
, 2003
, “Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,” Compos. Part A: Appl. Sci. Manuf.
, 34
(8
), pp. 689
–694
.10.
Dong
, N.
, Zhong
, M.
, Fei
, P.
, Lei
, Z.
, and Su
, B.
, 2016
, “Magnetic and Electrochemical Properties of PANI-CoFe2O4 Nanocomposites Synthesized via a Novel One-Step Solvothermal Method
,” J. Alloys Compd.
, 660
, pp. 382
–386
. 10.1016/j.jallcom.2015.11.17511.
Kim
, H.
, Miura
, Y.
, and Macosko
, C. W.
, 2010
, “Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity
,” Chem. Mater.
, 22
(11
), pp. 3441
–3450
. 10.1021/cm100477v12.
Liu
, Y.
, Xiong
, W.
, Jiang
, L.
, Zhou
, Y.
, and Lu
, Y.
, 2016
, “Precise 3D Printing of Micro/nanostructures using Highly Conductive Carbon Nanotube-thiol-acrylate Composites
,” Laser 3D Manufacturing III
, San Francisco, CA
, p. 973808
.13.
Imbaby
, M.
, and Jiang
, K.
, 2009
, “Fabrication of Free Standing 316-L Stainless Steel–Al2O3 Composite Micro Machine Parts by Soft Moulding
,” Acta Mater.
, 57
(16
), pp. 4751
–4757
. 10.1016/j.actamat.2009.06.03414.
Imbaby
, M.
, and Jiang
, K.
, 2010
, “Stainless Steel–Titania Composite Micro Gear Fabricated by Soft Moulding and Dispersing Technique
,” Microelectron. Eng.
, 87
(5–8
), pp. 1650
–1654
. 10.1016/j.mee.2009.10.01715.
Jiguet
, S.
, Judelewicz
, M.
, Mischler
, S.
, Bertch
, A.
, and Renaud
, P.
, 2006
, “Effect of Filler Behavior on Nanocomposite SU8 Photoresist for Moving Micro-Parts
,” Microelectron. Eng.
, 83
(4–9
), pp. 1273
–1276
. 10.1016/j.mee.2006.01.06816.
Tang
, Q. Y.
, Chan
, Y. C.
, Wong
, N. B.
, and Cheung
, R.
, 2010
, “Surfactant-Assisted Processing of Polyimide/Multiwall Carbon Nanotube Nanocomposites for Microelectronics Applications
,” Polym. Int.
, 59
(9
), pp. 1240
–1245
. 10.1002/pi.285517.
Chen
, F.-C.
, Chu
, C.-W.
, He
, J.
, Yang
, Y.
, and Lin
, J.-L.
, 2004
, “Organic Thin-Film Transistors With Nanocomposite Dielectric Gate Insulator
,” Appl. Phys. Lett.
, 85
(15
), pp. 3295
–3297
. 10.1063/1.180628318.
Tang
, H.
, and Sodano
, H. A.
, 2013
, “High Energy Density Nanocomposite Capacitors Using Non-Ferroelectric Nanowires
,” Appl. Phys. Lett.
, 102
(6
), p. 063901
. 10.1063/1.479251319.
Raj
, P. M.
, Sharma
, H.
, Reddy
, G. P.
, Altunyurt
, N.
, Swaminathan
, M.
, Tummala
, R.
, and Nair
, V.
, 2014
, “Cobalt–Polymer Nanocomposite Dielectrics for Miniaturized Antennas
,” J. Electron. Mater.
, 43
(4
), pp. 1097
–1106
. 10.1007/s11664-014-3025-520.
Pithaksareetham
, N.
, Hongkarnjanakul
, N.
, and Suchat
, S.
, 2018
, “Eco‐Nanocomposites with Epoxidized Natural Rubber for Improved Mechanical Properties Essential to Unmanned Aerial Vehicles Propeller Applications
,” Adv. Polymer Technol.
, 37
(8
), pp. 2946
–2957
.21.
Pines
, D. J.
, and Bohorquez
, F.
, 2006
, “Challenges Facing Future Micro-air-Vehicle Development
,” J. Aircr.
, 43
(2
), pp. 290
–305
. 10.2514/1.492222.
Vijayanandh
, R.
, Kumar
, N.
, Kumar
, S.
, Kumar
, R.
, and Kumar
, N.
, 2018
, “Material Optimization of High Speed Micro Aerial Vehicle Using FSI Simulation
,” Proc. Comput. Sci.
, 133
, pp. 2
–9
. 10.1016/j.procs.2018.07.00223.
Kumar
, D.
, Goyal
, T.
, Kumar
, V.
, Mohite
, P.
, Kamle
, S.
, and Verma
, V.
, 2015
, “Development and Modal Analysis of Bioinspired CNT/Epoxy Nanocomposite MAV Flapping Wings
,” J. Aerosp. Sci. Technol.
, 67
(1
), pp. 88
–93
.24.
Sun
, X.
, and Li
, J.
, 2007
, “Friction and Wear Properties of Electrodeposited Nickel–Titania Nanocomposite Coatings
,” Tribol. Lett.
, 28
(3
), pp. 223
–228
. 10.1007/s11249-007-9254-525.
Masuda
, J. i.
, and Torkelson
, J. M.
, 2008
, “Dispersion and Major Property Enhancements in Polymer/Multiwall Carbon Nanotube Nanocomposites via Solid-State Shear Pulverization Followed by Melt Mixing
,” Macromolecules
, 41
(16
), pp. 5974
–5977
. 10.1021/ma801321j26.
Roul
, J.
, Sahoo
, S. K.
, and Mohapatra
, R.
, 2013
, “Design and Characterization of Biodegradable Polymer-Clay Nanocomposites Prepared by Solution Mixing Technique
,” Int. J. Nano Dimens.
, 4
(2
), pp. 135
–139
.27.
Zeng
, Q.
, Wang
, D.
, Yu
, A.
, and Lu
, G.
, 2002
, “Synthesis of Polymer–Montmorillonite Nanocomposites by In Situ Intercalative Polymerization
,” Nanotechnology
, 13
(5
), p. 549
–553
. 10.1088/0957-4484/13/5/30128.
Lee
, M.
, Kim
, B.
, Nam
, J.
, Lee
, Y.
, Son
, Y.
, and Seo
, S.
, 2003
, “In-situ Formation of Gold Nanoparticle/Conducting Polymer Nanocomposites
,” Mol. Cryst. Liq. Cryst.
, 407
(1
), pp. 1
–6
. 10.1080/74481900629.
Rahman
, I. A.
, and Padavettan
, V.
, 2012
, “Synthesis of Silica Nanoparticles by Sol-gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review
,” J. Nanomater.
, 2012
, p. 8
. 10.1155/2012/13242430.
Choa
, Y.-H.
, Yang
, J.-K.
, Kim
, B.-H.
, Jeong
, Y.-K.
, Lee
, J.-S.
, Nakayama
, T.
, Sekino
, T.
, and Niihara
, K.
, 2003
, “Preparation and Characterization of Metal/Ceramic Nanoporous Nanocomposite Powders
,” J. Magn. Magn. Mater.
, 266
(1–2
), pp. 12
–19
. 10.1016/S0304-8853(03)00450-531.
Zhou
, S.-m.
, Zhang
, X.-b.
, Ding
, Z.-p.
, Min
, C.-y.
, Xu
, G.-l.
, and Zhu
, W.-m.
, 2007
, “Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressureless Infiltration Technique
,” Compos. Part A: Appl. Sci. Manuf.
, 38
(2
), pp. 301
–306
. 10.1016/j.compositesa.2006.04.00432.
Li
, X.
, Yang
, Y.
, and Cheng
, X.
, 2004
, “Ultrasonic-assisted Fabrication of Metal Matrix Nanocomposites
,” J. Mater. Sci.
, 39
(9
), pp. 3211
–3212
. 10.1023/B:JMSC.0000025862.23609.6f33.
Ying
, D.
, and Zhang
, D.
, 2000
, “Processing of Cu–Al2O3 Metal Matrix Nanocomposite Materials by Using High Energy Ball Milling
,” Mater. Sci. Eng. A
, 286
(1
), pp. 152
–156
. 10.1016/S0921-5093(00)00627-434.
Cao
, Y.
, Su
, Q.
, Che
, R.
, Du
, G.
, and Xu
, B.
, 2012
, “One-step Chemical Vapor Synthesis of Ni/Graphene Nanocomposites With Excellent Electromagnetic and Electrocatalytic Properties
,” Synth. Met.
, 162
(11–12
), pp. 968
–973
. 10.1016/j.synthmet.2012.04.01935.
Joseph
, M.
, Tsotsos
, C.
, Baker
, M.
, Kench
, P.
, Rebholz
, C.
, Matthews
, A.
, and Leyland
, A.
, 2005
, “Characterisation and Tribological Evaluation of Nitrogen-Containing Molybdenum–Copper PVD Metallic Nanocomposite Films
,” Surf. Coat. Technol.
, 190
(2–3
), pp. 345
–356
. 10.1016/j.surfcoat.2004.04.07436.
Kamat
, P. V.
, Flumiani
, M.
, and Dawson
, A.
, 2002
, “Metal–Metal and Metal–Semiconductor Composite Nanoclusters
,” Colloids Surf., A
, 202
(2–3
), pp. 269
–279
. 10.1016/S0927-7757(01)01071-837.
Roy
, S.
, Das
, D.
, Chakravorty
, D.
, and Agrawal
, D.
, 1993
, “Magnetic Properties of Glass-Metal Nanocomposites Prepared by the Sol-gel Route and Hot Pressing
,” J. Appl. Phys.
, 74
(7
), pp. 4746
–4749
. 10.1063/1.35434438.
Choa
, Y.
, Yoo
, S.
, Yang
, J.
, Park
, J.
, Oh
, S.
, Kang
, K.
, and Kang, S.-G. 2007
, “Effect of Powder Synthesis Processing on the Microstructure and Electrical Conductivity of Sintered CNTs/Fe/Al2O3 Nanocomposites
,” Materials Science Forum
, 534–536
, pp. 1021
–1024
. www.scientific.net/msf.534-536.102139.
Schmidt
, W. R.
, Narsavage-Heald
, D. M.
, Jones
, D. M.
, Marchetti
, P. S.
, Raker
, D.
, and Maciel
, G. E.
, 1999
, “Poly (Borosilazane) Precursors to Ceramic Nanocomposites
,” Chem. Mater.
, 11
(6
), pp. 1455
–1464
. 10.1021/cm980558u40.
Ennas
, G.
, Mei
, A.
, Musinu
, A.
, Piccaluga
, G.
, Pinna
, G.
, and Solinas
, S.
, 1998
, “Sol–gel Preparation and Characterization of Ni–SiO2 Nanocomposites
,” J. Non-Cryst. Solids
, 232
, pp. 587
–593
. 10.1016/S0022-3093(98)00430-X41.
Timoshkov
, I.
, Kurmashev
, V.
, and Timoshkov
, V.
, 2011
, “Electroplated Nanocomposites of High Wear Resistance for Advanced Systems Application,” Advances in Nanocomposite Technology
, A.
Hashim
, ed., IntechOpen.
, Janeza Trdine 9, 51000 Rijeka, Croatia
.42.
Das
, R. N.
, Egitto
, F. D.
, Lauffer
, J. M.
, and Markovich
, V. R.
, 2007
, “Laser Micromachining of Nanocomposite-Based Flexible Embedded Capacitors
,” 2007 Proceedings 57th Electronic Components and Technology Conference
, pp. 435
–441
.43.
Udofia
, E. N.
, and Zhou
, W.
, 2019
, “A Guiding Framework for Microextrusion Additive Manufacturing
,” ASME J. Manuf. Sci. Eng.
, 141
(5
), p. 050801
. 10.1115/1.404260744.
Bartkowiak
, T.
, and Brown
, C. A.
, 2018
, “A Characterization of Process–Surface Texture Interactions in Micro-Electrical Discharge Machining Using Multiscale Curvature Tensor Analysis
,” ASME J. Manuf. Sci. Eng.
, 140
(2
). 10.1115/1.403760145.
Li
, J.
, Liu
, J.
, Liu
, J.
, Ji
, Y.
, and Xu
, C.
, 2013
, “Experimental Investigation on the Machinability of SiC Nano-Particles Reinforced Magnesium Nanocomposites During Micro-Milling Processes
,” Int. J. Manuf. Res.
, 8
(1
), pp. 64
–84
. 10.1504/IJMR.2013.05184046.
Brinksmeier
, E.
, Gläbe
, R.
, Riemer
, O.
, and Twardy
, S.
, 2008
, “Potentials of Precision Machining Processes for the Manufacture of Micro Forming Molds
,” Microsyst. Technol.
, 14
(12
), p. 1983
–1987
. 10.1007/s00542-008-0656-647.
Baig
, Z.
, Mamat
, O.
, Mustapha
, M.
, Mumtaz
, A.
, Sarfraz
, M.
, and Haider
, S.
, 2018
, “An Efficient Approach to Address Issues of Graphene Nanoplatelets (GNPs) Incorporation in Aluminium Powders and Their Compaction Behaviour
,” Metals
, 8
(2
), p. 90
. 10.3390/met802009048.
Kingston
, C. T.
, Jakubek
, Z. J.
, Dénommée
, S.
, and Simard
, B.
, 2004
, “Efficient Laser Synthesis of Single-Walled Carbon Nanotubes Through Laser Heating of the Condensing Vaporization Plume
,” Carbon
, 42
(8–9
), pp. 1657
–1664
. 10.1016/j.carbon.2004.02.02049.
Gustafsson
, H.
, Isaksson
, S.
, Altskär
, A.
, and Holmberg
, K.
, 2016
, “Mesoporous Silica Nanoparticles With Controllable Morphology Prepared From Oil-in-Water Emulsions
,” J. Colloid Interface Sci.
, 467
, pp. 253
–260
. 10.1016/j.jcis.2016.01.02650.
Huang
, M.
, and Li
, Z.
, 2006
, “Influences of Particle Size and Interface Energy on the Stress Concentration Induced by the Oblate Spheroidal Particle and the Void Nucleation Mechanism
,” Int. J. Solids Struct.
, 43
(14–15
), pp. 4097
–4115
. 10.1016/j.ijsolstr.2005.04.01551.
Zhou
, W.
, Yu
, D.
, Wang
, C.
, An
, Q.
, and Qi
, S.
, 2008
, “Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-Filled Silicone Rubber
,” Polym. Eng. Sci.
, 48
(7
), pp. 1381
–1388
.52.
Chisholm
, N.
, Mahfuz
, H.
, Rangari
, V. K.
, Ashfaq
, A.
, and Jeelani
, S.
, 2005
, “Fabrication and Mechanical Characterization of Carbon/SiC-Epoxy Nanocomposites
,” Compos. Struct.
, 67
(1
), pp. 115
–124
. 10.1016/j.compstruct.2004.01.01053.
Dekkers
, M.
, and Heikens
, D.
, 1983
, “The Effect of Interfacial Adhesion on the Tensile Behavior of Polystyrene–Glass-Bead Composites
,” J. Appl. Polym. Sci.
, 28
(12
), pp. 3809
–3815
. 10.1002/app.1983.07028122054.
Zhang
, Q.
, Tian
, M.
, Wu
, Y.
, Lin
, G.
, and Zhang
, L.
, 2004
, “Effect of Particle Size on the Properties of Mg (OH) 2-Filled Rubber Composites
,” J. Appl. Polym. Sci.
, 94
(6
), pp. 2341
–2346
. 10.1002/app.2103755.
Radford
, K.
, 1971
, “The Mechanical Properties of an Epoxy Resin With a Second Phase Dispersion
,” J. Mater. Sci.
, 6
(10
), pp. 1286
–1291
.56.
Spanoudakis
, J.
, and Young
, R.
, 1984
, “Crack Propagation in a Glass Particle-Filled Epoxy Resin
,” J. Mater. Sci.
, 19
(2
), pp. 473
–486
.57.
Nakamura
, Y.
, Yamaguchi
, M.
, Okubo
, M.
, and Matsumoto
, T.
, 1992
, “Effect of Particle Size on Mechanical Properties of Epoxy Resin Filled With Angular-Shaped Silica
,” J. Appl. Polym. Sci.
, 44
(1
), pp. 151
–158
.58.
Lazzeri
, A.
, Thio
, Y.
, and Cohen
, R.
, 2004
, “Volume Strain Measurements on CaCO3/Polypropylene Particulate Composites: The Effect of Particle Size
,” J. Appl. Polym. Sci.
, 91
(2
), pp. 925
–935
. 10.1002/app.1326859.
Suprapakorn
, N.
, Dhamrongvaraporn
, S.
, and Ishida
, H.
, 1998
, “Effect of CaCO3 on the Mechanical and Rheological Properties of a Ring-Opening Phenolic Resin: Polybenzoxazine
,” Polym. Compos.
, 19
(2
), pp. 126
–132
. 10.1002/pc.1008260.
Singh
, R.
, Zhang
, M.
, and Chan
, D.
, 2002
, “Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction
,” J. Mater. Sci.
, 37
(4
), pp. 781
–788
.61.
Kitey
, R.
, and Tippur
, H.
, 2005
, “Role of Particle Size and Filler–Matrix Adhesion on Dynamic Fracture of Glass-Filled Epoxy. I. Macromeasurements
,” Acta Mater.
, 53
(4
), pp. 1153
–1165
. 10.1016/j.actamat.2004.11.01262.
Roulin-Moloney
, A.
, Cantwell
, W.
, and Kausch
, H.
, 1987
, “Parameters Determining the Strength and Toughness of Particulate-Filled Epoxy Resins
,” Polym. Compos.
, 8
(5
), pp. 314
–323
. 10.1002/pc.75008050663.
Onuegbu
, G. C.
, and Igwe
, I. O.
, 2011
, “The Effects of Filler Contents and Particle Sizes on the Mechanical and End-use Properties of Snail Shell Powder Filled Polypropylene
,” Mater. Sci. Appl.
, 2
(7
), pp. 811
–817
.64.
Devaprakasam
, D.
, Hatton
, P.
, Möbus
, G.
, and Inkson
, B.
, 2008
, “Effect of Microstructure of Nano-and Micro-Particle Filled Polymer Composites on Their Tribo-Mechanical Performance
,” EMAG 2007
, Glasgow Caledonian University & The University of Glasgow, Scotland
, Sept. 3–7, 2007
, p. 012057
.65.
Douce
, J.
, Boilot
, J.-P.
, Biteau
, J.
, Scodellaro
, L.
, and Jimenez
, A.
, 2004
, “Effect of Filler Size and Surface Condition of Nano-Sized Silica Particles in Polysiloxane Coatings
,” Thin Solid Films
, 466
(1–2
), pp. 114
–122
. 10.1016/j.tsf.2004.03.02466.
Edwards
, D.
, 1990
, “Polymer-filler Interactions in Rubber Reinforcement
,” J. Mater. Sci.
, 25
(10
), pp. 4175
–4185
. 10.1007/BF0058107067.
Kamigaito
, O.
, 1991
, “What Can be Improved by Nanometer Composites?
,” J. Jpn. Soc. Powder Powder Metall.
, 38
(3
), pp. 315
–321
. 10.2497/jjspm.38.31568.
Kumar
, R. M.
, Sharma
, S. K.
, Kumar
, B. M.
, and Lahiri
, D.
, 2015
, “Effects of Carbon Nanotube Aspect Ratio on Strengthening and Tribological Behavior of Ultra High Molecular Weight Polyethylene Composite
,” Compos. Part A: Appl. Sci. Manuf.
, 76
, pp. 62
–72
. 10.1016/j.compositesa.2015.05.00769.
Chowdhury
, S.
, and Okabe
, T.
, 2007
, “Computer Simulation of Carbon Nanotube Pull-out From Polymer by the Molecular Dynamics Method
,” Compos. Part A: Appl. Sci. Manuf.
, 38
(3
), pp. 747
–754
. 10.1016/j.compositesa.2006.09.01170.
Yazdchi
, K.
, and Salehi
, M.
, 2011
, “The Effects of CNT Waviness on Interfacial Stress Transfer Characteristics of CNT/Polymer Composites
,” Compos. Part A: Appl. Sci. Manuf.
, 42
(10
), pp. 1301
–1309
.71.
Xiao
, K.
, and Zhang
, L.
, 2004
, “The Stress Transfer Efficiency of a Single-Walled Carbon Nanotube in Epoxy Matrix
,” J. Mater. Sci.
, 39
(14
), pp. 4481
–4486
.72.
Li
, K.
, and Saigal
, S.
, 2007
, “Micromechanical Modeling of Stress Transfer in Carbon Nanotube Reinforced Polymer Composites
,” Mater. Sci. Eng. A
, 457
(1-2
), pp. 44
–57
.73.
Cox
, H.
, 1952
, “The Elasticity and Strength of Paper and Other Fibrous Materials
,” Br. J. Appl. Phys.
, 3
(3
), pp. 72
.74.
Fornes
, T.
, and Paul
, D.
, 2003
, “Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories
,” Polymer
, 44
(17
), pp. 4993
–5013
. 10.1016/S0032-3861(03)00471-375.
Bhattacharya
, A.
, Ganguly
, K.
, De
, A.
, and Sarkar
, S.
, 1996
, “A new Conducting Nanocomposite—PPy-Zirconium (IV) Oxide
,” Mater. Res. Bull.
, 31
(5
), pp. 527
–530
.76.
Yoo
, S.
, Han
, S.
, and Kim
, W.
, 2013
, “Strength and Strain Hardening of Aluminum Matrix Composites With Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes
,” Scr. Mater.
, 68
(9
), pp. 711
–714
.77.
Choi
, H.
, Min
, B.
, Shin
, J.
, and Bae
, D.
, 2011
, “Strengthening in Nanostructured 2024 Aluminum Alloy and Its Composites Containing Carbon Nanotubes
,” Compos. Part A: Appl. Sci. Manuf.
, 42
(10
), pp. 1438
–1444
. 10.1016/j.compositesa.2011.06.00878.
Youssef
, K. M.
, Scattergood
, R. O.
, Murty
, K. L.
, Horton
, J. A.
, and Koch
, C. C.
, 2005
, “Ultrahigh Strength and High Ductility of Bulk Nanocrystalline Copper
,” Appl. Phys. Lett.
, 87
(9
), p. 091904
. 10.1063/1.203412279.
Nam
, D. H.
, Cha
, S. I.
, Lim
, B. K.
, Park
, H. M.
, Han
, D. S.
, and Hong
, S. H.
, 2012
, “Synergistic Strengthening by Load Transfer Mechanism and Grain Refinement of CNT/Al–Cu Composites
,” Carbon
, 50
(7
), pp. 2417
–2423
.80.
Ashby
, M.
, 1970
, “The Deformation of Plastically Non-Homogeneous Materials
,” Philos. Mag.: J. Theor. Exp. Appl. Phys.
, 21
(170
), pp. 399
–424
.81.
Nan
, C.-W.
, and Clarke
, D.
, 1996
, “The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites
,” Acta Mater.
, 44
(9
), pp. 3801
–3811
.82.
Lloyd
, D.
, 1994
, “Particle Reinforced Aluminium and Magnesium Matrix Composites
,” Int. Mater. Rev.
, 39
(1
), pp. 1
–23
.83.
Barai
, P.
, and Weng
, G. J.
, 2011
, “A Theory of Plasticity for Carbon Nanotube Reinforced Composites
,” Int. J. Plast.
, 27
(4
), pp. 539
–559
.84.
Dong
, S.
, Zhou
, J.
, Hui
, D.
, Wang
, Y.
, and Zhang
, S.
, 2015
, “Size Dependent Strengthening Mechanisms in Carbon Nanotube Reinforced Metal Matrix Composites
,” Compos. Part A: Appl. Sci. Manuf.
, 68
, pp. 356
–364
. 10.1016/j.compositesa.2014.10.01885.
Han
, B.
, Sun
, S.
, Ding
, S.
, Zhang
, L.
, Yu
, X.
, and Ou
, J.
, 2015
, “Review of Nanocarbon-Engineered Multifunctional Cementitious Composites
,” Compos. Part A: Appl. Sci. Manuf.
, 70
, pp. 69
–81
. 10.1016/j.compositesa.2014.12.00286.
Xie
, X.-L.
, Mai
, Y.-W.
, and Zhou
, X.-P.
, 2005
, “Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,” Mater. Sci. Eng. R: Rep.
, 49
(4
), pp. 89
–112
.87.
Iijima
, S.
, 1991
, “Helical Microtubules of Graphitic Carbon
,” Nature
, 354
(6348
), pp. 56
–58
.88.
Iijima
, S.
, and Ichihashi
, T.
, 1993
, “Single-shell Carbon Nanotubes of 1-nm Diameter
,” Nature
, 363
(6430
), pp. 603
–605
.89.
Singh
, B.
, Baburao
, C.
, Pispati
, V.
, Pathipati
, H.
, Muthy
, N.
, Prassana
, S.
, and Rathode
, B. G.
, 2012
, “Carbon Nanotubes. A Novel Drug Delivery System
,” Int. J. Res. Pharm. Chem.
, 2
(2
), pp. 523
–532
.90.
Kumar
, S.
, Rani
, R.
, Dilbaghi
, N.
, Tankeshwar
, K.
, and Kim
, K.-H.
, 2017
, “Carbon Nanotubes: A Novel Material for Multifaceted Applications in Human Healthcare
,” Chem. Soc. Rev.
, 46
(1
), pp. 158
–196
.91.
Peng
, L.-M.
, Zhang
, Z.
, and Wang
, S.
, 2014
, “Carbon Nanotube Electronics: Recent Advances
,” Mater. Today
, 17
(9
), pp. 433
–442
.92.
De Volder
, M. F.
, Tawfick
, S. H.
, Baughman
, R. H.
, and Hart
, A. J.
, 2013
, “Carbon Nanotubes: Present and Future Commercial Applications
,” Science
, 339
(6119
), pp. 535
–539
.93.
Cebeci
, H.
, de Villoria
, R. G.
, Hart
, A. J.
, and Wardle
, B. L.
, 2009
, “Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Polymer Composites With Controlled Morphology
,” Compos. Sci. Technol.
, 69
(15–16
), pp. 2649
–2656
.94.
Allaoui
, A.
, Bai
, S.
, Cheng
, H.-M.
, and Bai
, J.
, 2002
, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite
,” Compos. Sci. Technol.
, 62
(15
), pp. 1993
–1998
.95.
Samal
, S. S.
, and Bal
, S.
, 2008
, “Carbon Nanotube Reinforced Ceramic Matrix Composites—A Review
,” J. Miner. & Mater. Charac. & Eng.
, 7
(4
), pp. 355
–370
.96.
Silvestre
, N.
, 2013
, “State-of-the-Art Review on Carbon Nanotube Reinforced Metal Matrix Composites
,” Int. J. Compos. Mater.
, 3
(6
), pp. 28
–44
.97.
Lu
, W.
, Zu
, M.
, Byun
, J. H.
, Kim
, B. S.
, and Chou
, T. W.
, 2012
, “State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges
,” Adv. Mater.
, 24
(14
), pp. 1805
–1833
. 10.1002/adma.20110467298.
Gong
, X.
, Liu
, J.
, Baskaran
, S.
, Voise
, R. D.
, and Young
, J. S.
, 2000
, “Surfactant-assisted Processing of Carbon Nanotube/Polymer Composites
,” Chem. Mater.
, 12
(4
), pp. 1049
–1052
.99.
Breton
, Y.
, Delpeux
, S.
, Benoit
, R.
, Salvetat
, J.
, Sinturel
, C.
, Beguin
, F.
, Bonnamy
, S.
, Desarmot
, G.
, and Boufendi
, L.
, 2002
, “Functionalization of Multiwall Carbon Nanotubes: Properties of Nanotubes-Epoxy Composites
,” Mol. Cryst. Liq. Cryst.
, 387
(1
), pp. 135
–140
. 10.1080/10587250215234100.
Zhu
, J.
, Peng
, H.
, Rodriguez-Macias
, F.
, Margrave
, J. L.
, Khabashesku
, V. N.
, Imam
, A. M.
, Lozano
, K.
, and Barrera
, E. V.
, 2004
, “Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes
,” Adv. Funct. Mater.
, 14
(7
), pp. 643
–648
.101.
Zhu
, J.
, Kim
, J.
, Peng
, H.
, Margrave
, J. L.
, Khabashesku
, V. N.
, and Barrera
, E. V.
, 2003
, “Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites Through Functionalization
,” Nano Lett.
, 3
(8
), pp. 1107
–1113
. 10.1021/nl0342489102.
Haggenmueller
, R.
, Zhou
, W.
, Fischer
, J.
, and Winey
, K.
, 2003
, “Production and Characterization of Polymer Nanocomposites With Highly Aligned Single-Walled Carbon Nanotubes
,” J. Nanosci. Nanotechnol.
, 3
(1–2
), pp. 105
–110
.103.
Tang
, W.
, Santare
, M. H.
, and Advani
, S. G.
, 2003
, “Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Nanotube/High Density Polyethylene (MWNT/HDPE) Composite Films
,” Carbon
, 41
(14
), pp. 2779
–2785
. 10.1016/S0008-6223(03)00387-7104.
Kanagaraj
, S.
, Varanda
, F. R.
, Zhil’tsova
, T., Oliveira, M. S. A., and Simöes, J. A.
2007
, “Mechanical Properties of High Density Polyethylene/Carbon Nanotube Composites
,” Compos. Sci. Technol.
, 67
(15–16
), pp. 3071
–3077
.105.
Zeng
, J.
, Saltysiak
, B.
, Johnson
, W.
, Schiraldi
, D. A.
, and Kumar
, S.
, 2004
, “Processing and Properties of Poly (Methyl Methacrylate)/Carbon Nano Fiber Composites
,” Compos. Part B: Eng.
, 35
(3
), pp. 245
–249
.106.
Cooper
, C. A.
, Ravich
, D.
, Lips
, D.
, Mayer
, J.
, and Wagner
, H. D.
, 2002
, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix
,” Compos. Sci. Technol.
, 62
(7–8
), pp. 1105
–1112
. 10.1016/S0266-3538(02)00056-8107.
Kumar
, S.
, Dang
, T. D.
, Arnold
, F. E.
, Bhattacharyya
, A. R.
, Min
, B. G.
, Zhang
, X.
, Vaia
, R. A.
, Park
, C.
, Adams
, W. W.
, Hauge
, R. H.
, and Smalley
, R. E.
, 2002
, “Synthesis, Structure, and Properties of PBO/SWNT Composites
,” Macromolecules
, 35
(24
), pp. 9039
–9043
.108.
Paiva
, M.
, Zhou
, B.
, Fernando
, K.
, Lin
, Y.
, Kennedy
, J.
, and Sun
, Y.-P.
, 2004
, “Mechanical and Morphological Characterization of Polymer–Carbon Nanocomposites From Functionalized Carbon Nanotubes
,” Carbon
, 42
(14
), pp. 2849
–2854
.109.
Roslaniec
, Z.
, Broza
, G.
, and Schulte
, K.
, 2003
, “Nanocomposites Based on Multiblock Polyester Elastomers (PEE) and Carbon Nanotubes (CNT)
,” Compos. Interfaces
, 10
(1
), pp. 95
–102
. 10.1163/156855403763586819110.
Pötschke
, P.
, Bhattacharyya
, A. R.
, Janke
, A.
, and Goering
, H.
, 2003
, “Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites
,” Compos. Interfaces
, 10
(4–5
), pp. 389
–404
. 10.1163/156855403771953650111.
Meincke
, O.
, Kaempfer
, D.
, Weickmann
, H.
, Friedrich
, C.
, Vathauer
, M.
, and Warth
, H.
, 2004
, “Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and Its Blends With Acrylonitrile/Butadiene/Styrene
,” Polymer
, 45
(3
), pp. 739
–748
. 10.1016/j.polymer.2003.12.013112.
Liu
, T.
, Phang
, I. Y.
, Shen
, L.
, Chow
, S. Y.
, and Zhang
, W.-D.
, 2004
, “Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites
,” Macromolecules
, 37
(19
), pp. 7214
–7222
. 10.1021/ma049132t113.
Bikiaris
, D.
, 2010
, “Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites
,” Materials
, 3
(4
), pp. 2884
–2946
. 10.3390/ma3042884114.
Zhang
, P.
, Qiu
, D.
, Chen
, H.
, Sun
, J.
, Wang
, J.
, Qin
, C.
, and Dai
, L.
, 2015
, “Preparation of MWCNTs Grafted With Polyvinyl Alcohol Through Friedel–Crafts Alkylation and Their Composite Fibers With Enhanced Mechanical Properties
,” J. Mater. Chem. A
, 3
(4
), pp. 1442
–1449
.115.
Gao
, J.
, Itkis
, M. E.
, Yu
, A.
, Bekyarova
, E.
, Zhao
, B.
, and Haddon
, R. C.
, 2005
, “Continuous Spinning of a Single-Walled Carbon Nanotube−Nylon Composite Fiber
,” J. Am. Chem. Soc.
, 127
(11
), pp. 3847
–3854
.116.
Fornes
, T.
, Baur
, J.
, Sabba
, Y.
, and Thomas
, E.
, 2006
, “Morphology and Properties of Melt-Spun Polycarbonate Fibers Containing Single-and Multi-Wall Carbon Nanotubes
,” Polymer
, 47
(5
), pp. 1704
–1714
.117.
Mishra
, S.
, Sonawane
, S.
, and Singh
, R.
, 2005
, “Studies on Characterization of Nano CaCO3 Prepared by the In Situ Deposition Technique and Its Application in PP-Nano CaCO3 Composites
,” J. Polym. Sci., Part B: Polym. Phys.
, 43
(1
), pp. 107
–113
. 10.1002/polb.20296118.
Kearns
, J. C.
, and Shambaugh
, R. L.
, 2002
, “Polypropylene Fibers Reinforced With Carbon Nanotubes
,” J. Appl. Polym. Sci.
, 86
(8
), pp. 2079
–2084
. 10.1002/app.11160119.
Chen
, X.
, Wang
, J.
, Lin
, M.
, Zhong
, W.
, Feng
, T.
, Chen
, X.
, Chen
, J.
, and Xue
, F.
, 2008
, “Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced With Amino-Functionalized Multi-Walled Carbon Nanotubes
,” Mater. Sci. Eng. A
, 492
(1–2
), pp. 236
–242
. 10.1016/j.msea.2008.04.044120.
Chae
, H. G.
, Minus
, M. L.
, and Kumar
, S.
, 2006
, “Oriented and Exfoliated Single Wall Carbon Nanotubes in Polyacrylonitrile
,” Polymer
, 47
(10
), pp. 3494
–3504
. 10.1016/j.polymer.2006.03.050121.
Shokrieh
, M. M.
, Saeedi
, A.
, and Chitsazzadeh
, M.
, 2013
, “Mechanical Properties of Multi-Walled Carbon Nanotube/Polyester Nanocomposites
,” J. Nanostruct. Chem.
, 3
(1
), p. 20
. 10.1186/2193-8865-3-20122.
Jyoti
, J.
, Basu
, S.
, Singh
, B. P.
, and Dhakate
, S.
, 2015
, “Superior Mechanical and Electrical Properties of Multiwall Carbon Nanotube Reinforced Acrylonitrile Butadiene Styrene High Performance Composites
,” Compos. Part B: Eng.
, 83
, pp. 58
–65
. 10.1016/j.compositesb.2015.08.055123.
Shin
, J.
, Kim
, C.
, and Geckeler
, K. E.
, 2009
, “Single-Walled Carbon Nanotube–Polystyrene Nanocomposites: Dispersing Nanotubes in Organic Media
,” Polym. Int.
, 58
(5
), pp. 579
–583
. 10.1002/pi.2550124.
Esawi
, A. M.
, Salem
, H. G.
, Hussein
, H. M.
, and Ramadan
, A. R.
, 2010
, “Effect of Processing Technique on the Dispersion of Carbon Nanotubes Within Polypropylene Carbon Nanotube-Composites and its Effect on Their Mechanical Properties
,” Polym. Compos.
, 31
(5
), pp. 772
–780
.125.
Chen
, J.
, Liu
, B.
, Gao
, X.
, and Xu
, D.
, 2018
, “A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes
,” RSC Adv.
, 8
(49
), pp. 28048
–28085
.126.
Gojny
, F. H.
, Wichmann
, M. H.
, Fiedler
, B.
, and Schulte
, K.
, 2005
, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,” Compos. Sci. Technol.
, 65
(15–16
), pp. 2300
–2313
. 10.1016/j.compscitech.2005.04.021127.
Sennett
, M.
, Welsh
, E.
, Wright
, J.
, Li
, W.
, Wen
, J.
, and Ren
, Z.
, 2001
, “Dispersion and Alignment of Carbon Nanotubes in Polycarbonate
,” MRS Online Proc. Libr. Arch.
, 706
(Z3.31.1
). 10.1557/PROC-706-Z3.31.1128.
Jang
, J.
, Bae
, J.
, and Yoon
, S.-H.
, 2003
, “A Study on the Effect of Surface Treatment of Carbon Nanotubes for Liquid Crystalline Epoxide–Carbon Nanotube Composites
,” J. Mater. Chem.
, 13
(4
), pp. 676
–681
. 10.1039/b212190e129.
Feng
, W.
, Bai
, X.
, Lian
, Y.
, Liang
, J.
, Wang
, X.
, and Yoshino
, K.
, 2003
, “Well-aligned Polyaniline/Carbon-Nanotube Composite Films Grown by In-Situ Aniline Polymerization
,” Carbon
, 41
(8
), pp. 1551
–1557
. 10.1016/S0008-6223(03)00078-2130.
Ajayan
, P.
, Stephan
, O.
, Colliex
, C.
, and Trauth
, D.
, 1994
, “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite
,” Science
, 265
(5176
), pp. 1212
–1214
.131.
Kimura
, T.
, Ago
, H.
, Tobita
, M.
, Ohshima
, S.
, Kyotani
, M.
, and Yumura
, M.
, 2002
, “Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field
,” Adv. Mater.
, 14
(19
), pp. 1380
–1383
.132.
Sen
, R.
, Zhao
, B.
, Perea
, D.
, Itkis
, M. E.
, Hu
, H.
, Love
, J.
, Bekyarova
, E.
, and Haddon
, R. C.
, 2004
, “Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning
,” Nano Lett.
, 4
(3
), pp. 459
–464
.133.
Lynch
, M. D.
, and Patrick
, D. L.
, 2002
, “Organizing Carbon Nanotubes With Liquid Crystals
,” Nano Lett.
, 2
(11
), pp. 1197
–1201
. 10.1021/nl025694j134.
Vacha
, J.
, and Boruka
, M.
, 2015
, “Mechanical Properties of Acrylonitrile Butadiene Styrene Thermoplastic Polymer Matrix with Carbon Nanotubes
,” Nanocon 2015
, Brno, Czech Republic
, Oct. 14–16
.135.
Khan
, S. U.
, Pothnis
, J. R.
, and Kim
, J.-K.
, 2013
, “Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites
,” Compos. Part A: Appl. Sci. Manuf.
, 49
, pp. 26
–34
. 10.1016/j.compositesa.2013.01.015136.
Khare
, K. S.
, Khabaz
, F.
, and Khare
, R.
, 2014
, “Effect of Carbon Nanotube Functionalization on Mechanical and Thermal Properties of Cross-Linked Epoxy–Carbon Nanotube Nanocomposites: Role of Strengthening the Interfacial Interactions
,” ACS Appl. Mater. Interfaces
, 6
(9
), pp. 6098
–6110
. 10.1021/am405317x137.
Wang
, C.
, Xu
, J.
, Yang
, J.
, Qian
, Y.
, and Liu
, H.
, 2017
, “In-situ Polymerization and Multifunctional Properties of Surface-Modified Multiwalled Carbon Nanotube-Reinforced Polyimide Nanocomposites
,” High Perform. Polym.
, 29
(7
), pp. 797
–807
.138.
Chen
, Z.-K.
, Yang
, J.-P.
, Ni
, Q.-Q.
, Fu
, S.-Y.
, and Huang
, Y.-G.
, 2009
, “Reinforcement of Epoxy Resins With Multi-Walled Carbon Nanotubes for Enhancing Cryogenic Mechanical Properties
,” Polymer
, 50
(19
), pp. 4753
–4759
.139.
Jangam
, S.
, Raja
, S.
, and Reddy
, K. H.
, 2018
, “Effect of Multiwalled Carbon Nanotube Alignment on the Tensile Fatigue Behavior of Nanocomposites
,” J. Compos. Mater.
, 52
(17
), pp. 2365
–2374
. 10.1177/0021998317745585140.
Shiju
, J.
, Al-Sagheer
, F.
, Bumajdad
, A.
, and Ahmad
, Z.
, 2018
, “In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties
,” Nanomaterials
, 8
(5
), p. 309
. 10.3390/nano8050309141.
Buffa
, F.
, Abraham
, G. A.
, Grady
, B. P.
, and Resasco
, D.
, 2007
, “Effect of Nanotube Functionalization on the Properties of Single-Walled Carbon Nanotube/Polyurethane Composites
,” J. Polym. Sci., Part B: Polym. Phys.
, 45
(4
), pp. 490
–501
. 10.1002/polb.21069142.
Gojny
, F.
, Wichmann
, M.
, Köpke
, U.
, Fiedler
, B.
, and Schulte
, K.
, 2004
, “Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,” Compos. Sci. Technol.
, 64
(15
), pp. 2363
–2371
.143.
Andrews
, R.
, and Weisenberger
, M.
, 2004
, “Carbon Nanotube Polymer Composites
,” Curr. Opin. Solid State Mater. Sci.
, 8
(1
), pp. 31
–37
. 10.1016/j.cossms.2003.10.006144.
Cha
, J.
, Jun
, G. H.
, Park
, J. K.
, Kim
, J. C.
, Ryu
, H. J.
, and Hong
, S. H.
, 2017
, “Improvement of Modulus, Strength and Fracture Toughness of CNT/Epoxy Nanocomposites Through the Functionalization of Carbon Nanotubes
,” Compos. Part B: Eng.
, 129
, pp. 169
–179
. 10.1016/j.compositesb.2017.07.070145.
Chen
, Y.
, Liu
, B.
, He
, X.
, Huang
, Y.
, and Hwang
, K.
, 2010
, “Failure Analysis and the Optimal Toughness Design of Carbon Nanotube-Reinforced Composites
,” Compos. Sci. Technol.
, 70
(9
), pp. 1360
–1367
. 10.1016/j.compscitech.2010.04.015146.
Ma
, C.
, Liu
, H.-Y.
, Du
, X.
, Mach
, L.
, Xu
, F.
, and Mai
, Y.-W.
, 2015
, “Fracture Resistance, Thermal and Electrical Properties of Epoxy Composites Containing Aligned Carbon Nanotubes by Low Magnetic Field
,” Compos. Sci. Technol.
, 114
, pp. 126
–135
. 10.1016/j.compscitech.2015.04.007147.
Ayatollahi
, M.
, Shadlou
, S.
, and Shokrieh
, M.
, 2011
, “Fracture Toughness of Epoxy/Multi-Walled Carbon Nanotube Nano-Composites Under Bending and Shear Loading Conditions
,” Mater. Des.
, 32
(4
), pp. 2115
–2124
. 10.1016/j.matdes.2010.11.034148.
Coto
, B.
, Antia
, I.
, Barriga
, J.
, Blanco
, M.
, and Sarasua
, J.-R.
, 2013
, “Influence of the Geometrical Properties of the Carbon Nanotubes on the Interfacial Behavior of Epoxy/CNT Composites: A Molecular Modelling Approach
,” Comput. Mater. Sci.
, 79
, pp. 99
–104
. 10.1016/j.commatsci.2013.05.057149.
Liu
, Y. J.
, and Chen
, X.
, 2003
, “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,” Mech. Mater.
, 35
(1–2
), pp. 69
–81
. 10.1016/S0167-6636(02)00200-4150.
Ayatollahi
, M.
, Shadlou
, S.
, Shokrieh
, M.
, and Chitsazzadeh
, M.
, 2011
, “Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxy-Based Nanocomposites
,” Polym. Test.
, 30
(5
), pp. 548
–556
. 10.1016/j.polymertesting.2011.04.008151.
Inam
, F.
, Vo
, T.
, Jones
, J. P.
, and Lee
, X.
, 2013
, “Effect of Carbon Nanotube Lengths on the Mechanical Properties of Epoxy Resin: An Experimental Study
,” J. Compos. Mater.
, 47
(19
), pp. 2321
–2330
. 10.1177/0021998312457198152.
Hollertz
, R.
, Chatterjee
, S.
, Gutmann
, H.
, Geiger
, T.
, Nüesch
, F.
, and Chu
, B.
, 2011
, “Improvement of Toughness and Electrical Properties of Epoxy Composites With Carbon Nanotubes Prepared by Industrially Relevant Processes
,” Nanotechnology
, 22
(12
), p. 125702
. 10.1088/0957-4484/22/12/125702153.
Cho
, S.-G.
, and Ko
, K.-C.
, 2010
, “Surface Free Energy and Super-Hydrophobic Coating of Multi-Walled Carbon Nanotubes by 3: 1 TMCS/Toluene Glow Discharge Plasma Under Low Pressure
,” Thin Solid Films
, 518
(22
), pp. 6619
–6623
. 10.1016/j.tsf.2010.03.136154.
Nuriel
, S.
, Liu
, L.
, Barber
, A.
, and Wagner
, H.
, 2005
, “Direct Measurement of Multiwall Nanotube Surface Tension
,” Chem. Phys. Lett.
, 404
(4–6
), pp. 263
–266
. 10.1016/j.cplett.2005.01.072155.
Zhang
, L.
, Wang
, J.
, Fuentes
, C. A.
, Zhang
, D.
, Van Vuure
, A. W.
, Seo
, J. W.
, and Seveno
, D.
, 2017
, “Wettability of Carbon Nanotube Fibers
,” Carbon
, 122
, pp. 128
–140
.156.
Atif
, R.
, and Inam
, F.
, 2016
, “Reasons and Remedies for the Agglomeration of Multilayered Graphene and Carbon Nanotubes in Polymers
,” Beilstein J. Nanotechnol.
, 7
(1
), pp. 1174
–1196
. 10.3762/bjnano.7.109157.
He
, C.
, Zhao
, N.
, Shi
, C.
, and Song
, S.
, 2009
, “Mechanical Properties and Microstructures of Carbon Nanotube-Reinforced Al Matrix Composite Fabricated by In Situ Chemical Vapor Deposition
,” J. Alloys Compd.
, 487
(1–2
), pp. 258
–262
. 10.1016/j.jallcom.2009.07.099158.
Kondoh
, K.
, Threrujirapapong
, T.
, Umeda
, J.
, and Fugetsu
, B.
, 2012
, “High-temperature Properties of Extruded Titanium Composites Fabricated From Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion
,” Compos. Sci. Technol.
, 72
(11
), pp. 1291
–1297
. 10.1016/j.compscitech.2012.05.002159.
Fukuda
, H.
, Kondoh
, K.
, Umeda
, J.
, and Fugetsu
, B.
, 2011
, “Interfacial Analysis Between Mg Matrix and Carbon Nanotubes in Mg–6 wt% Al Alloy Matrix Composites Reinforced With Carbon Nanotubes
,” Compos. Sci. Technol.
, 71
(5
), pp. 705
–709
.160.
Ostovan
, F.
, Matori
, K. A.
, Toozandehjani
, M.
, Oskoueian
, A.
, Yusoff
, H. M.
, Yunus
, R.
, Mohamed Ariff
, A. H.
, Quah
, H. J.
, and Lim
, W. F.
, 2015
, “Effects of CNTs Content and Milling Time on Mechanical Behavior of MWCNT-Reinforced Aluminum Nanocomposites
,” Mater. Chem. Phys.
, 166
, pp. 160
–166
. 10.1016/j.matchemphys.2015.09.041161.
Simões
, S.
, Viana
, F.
, Reis
, M. A.
, and Vieira
, M. F.
, 2015
, “Influence of Dispersion/Mixture Time on Mechanical Properties of Al–CNTs Nanocomposites
,” Compos. Struct.
, 126
, pp. 114
–122
. 10.1016/j.compstruct.2015.02.062162.
Kwon
, H.
, and Leparoux
, M.
, 2012
, “Hot Extruded Carbon Nanotube Reinforced Aluminum Matrix Composite Materials
,” Nanotechnology
, 23
(41
), p. 415701
. 10.1088/0957-4484/23/41/415701163.
Wu
, J.
, Zhang
, H.
, Zhang
, Y.
, and Wang
, X.
, 2012
, “Mechanical and Thermal Properties of Carbon Nanotube/Aluminum Composites Consolidated by Spark Plasma Sintering
,” Mater. Des.
, 41
, pp. 344
–348
. 10.1016/j.matdes.2012.05.014164.
Nguyen
, J.
, Wen
, H.
, Zhang
, Z.
, Yaghmaie
, F.
, and Lavernia
, E.
, 2014
, “Surfactant Assisted Dispersion and Adhesion Behavior of Carbon Nanotubes on Cu–Zr and Cu–Zr–Al Amorphous Powders
,” J. Mater. Sci. Technol.
, 30
(9
), pp. 847
–853
.165.
He
, C.
, Zhao
, N.
, Shi
, C.
, Du
, X.
, Li
, J.
, Li
, H.
, and Cui
, Q.
, 2007
, “An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites
,” Adv. Mater.
, 19
(8
), pp. 1128
–1132
. 10.1002/adma.200601381166.
Nai
, M. H.
, Wei
, J.
, and Gupta
, M.
, 2014
, “Interface Tailoring to Enhance Mechanical Properties of Carbon Nanotube Reinforced Magnesium Composites
,” Mater. Des.
, 60
, pp. 490
–495
. 10.1016/j.matdes.2014.04.011167.
Park
, Y.
, Cho
, K.
, Park
, I.
, and Park
, Y.
, 2011
, “Fabrication and Mechanical Properties of Magnesium Matrix Composite Reinforced With Si Coated Carbon Nanotubes
,” Proc. Eng.
, 10
, pp. 1446
–1450
. 10.1016/j.proeng.2011.04.240168.
Li
, H.-p.
, Fan
, J.-w.
, Kang
, J.-l.
, Zhao
, N.-q.
, Wang
, X.-x.
, and Li
, B.-e.
, 2014
, “In-situ Homogeneous Synthesis of Carbon Nanotubes on Aluminum Matrix and Properties of Their Composites
,” Trans. Nonferrous Met. Soc. China
, 24
(7
), pp. 2331
–2336
. 10.1016/S1003-6326(14)63353-7169.
Chunfeng
, D.
, Zhang
, X.
, Yanxia
, M.
, and Dezun
, W.
, 2007
, “Fabrication of Aluminum Matrix Composite Reinforced With Carbon Nanotubes
,” Rare Met.
, 26
(5
), pp. 450
–455
. 10.1016/S1001-0521(07)60244-7170.
Esawi
, A. M.
, and El Borady
, M. A.
, 2008
, “Carbon Nanotube-Reinforced Aluminium Strips
,” Compos. Sci. Technol.
, 68
(2
), pp. 486
–492
. 10.1016/j.compscitech.2007.06.030171.
Laha
, T.
, Chen
, Y.
, Lahiri
, D.
, and Agarwal
, A.
, 2009
, “Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming
,” Compos. Part A: Appl. Sci. Manuf.
, 40
(5
), pp. 589
–594
. 10.1016/j.compositesa.2009.02.007172.
Bakshi
, S. R.
, Singh
, V.
, Seal
, S.
, and Agarwal
, A.
, 2009
, “Aluminum Composite Reinforced With Multiwalled Carbon Nanotubes From Plasma Spraying of Spray Dried Powders
,” Surf. Coat. Technol.
, 203
(10–11
), pp. 1544
–1554
. 10.1016/j.surfcoat.2008.12.004173.
Daoush
, W. M.
, Lim
, B. K.
, Mo
, C. B.
, Nam
, D. H.
, and Hong
, S. H.
, 2009
, “Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process
,” Mater. Sci. Eng. A
, 513
, pp. 247
–253
. 10.1016/j.msea.2009.01.073174.
Kim
, K. T.
, Cha
, S. I.
, Hong
, S. H.
, and Hong
, S. H.
, 2006
, “Microstructures and Tensile Behavior of Carbon Nanotube Reinforced Cu Matrix Nanocomposites
,” Mater. Sci. Eng. A
, 430
(1–2
), pp. 27
–33
. 10.1016/j.msea.2006.04.085175.
Tu
, J.
, Yang
, Y.
, Wang
, L.
, Ma
, X.
, and Zhang
, X.
, 2001
, “Tribological Properties of Carbon-Nanotube-Reinforced Copper Composites
,” Tribol. Lett.
, 10
(4
), pp. 225
–228
. 10.1023/A:1016662114589176.
Vishwanath
, K.
, Raji
, G.
, Shakiba
, A.
, and Murthy
, S. K.
, 2018
, “Mechanical Properties of Copper Nanocomposites Reinforced With Uncoated and Nickel Coated Carbon Nanotubes
,” FME Trans.
, 46
(4
), pp. 623
–630
. 10.5937/fmet1804623K177.
Deng
, H.
, Yi
, J.
, Xia
, C.
, and Yi
, Y.
, 2017
, “Mechanical Properties and Microstructure Characterization of Well-Dispersed Carbon Nanotubes Reinforced Copper Matrix Composites
,” J. Alloys Compd.
, 727
, pp. 260
–268
. 10.1016/j.jallcom.2017.08.131178.
Shen
, G.-R.
, Cheng
, Y.-T.
, and Tsai
, L.-N.
, 2005
, “Synthesis and Characterization of Ni-P-CNT's Nanocomposite Film for MEMS Applications
,” IEEE Trans. Nanotechnol.
, 4
(5
), pp. 539
–547
. 10.1109/TNANO.2005.851397179.
Nguyen
, J.
, Holland
, T. B.
, Wen
, H.
, Fraga
, M.
, Mukherjee
, A.
, and Lavernia
, E.
, 2014
, “Mechanical Behavior of Ultrafine-Grained Ni–Carbon Nanotube Composite
,” J. Mater. Sci.
, 49
(5
), pp. 2070
–2077
. 10.1007/s10853-013-7897-1180.
Li
, C.
, Wang
, X.
, Liu
, W.
, Wu
, K.
, Shi
, H.
, Ding
, C.
, Hu
, X. S.
, and Zheng
, M. Y.
, 2014
, “Microstructure and Strengthening Mechanism of Carbon Nanotubes Reinforced Magnesium Matrix Composite
,” Mater. Sci. Eng. A
, 597
, pp. 264
–269
. 10.1016/j.msea.2014.01.008181.
Goh
, C.
, Wei
, J.
, Lee
, L.
, and Gupta
, M.
, 2006
, “Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes
,” Mater. Sci. Eng. A
, 423
(1–2
), pp. 153
–156
. 10.1016/j.msea.2005.10.071182.
Zhou
, M.
, Qu
, X.
, Ren
, L.
, Fan
, L.
, Zhang
, Y.
, Guo
, Y.
, Quan
, G.
, Tang
, Q.
, Liu
, B.
, and Sun
, H.
, 2017
, “The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy
,” Materials
, 10
(12
), pp. 1385
. 10.3390/ma10121385183.
Deng
, C.
, Ma
, Y.
, Zhang
, P.
, Zhang
, X.
, and Wang
, D.
, 2008
, “Thermal Expansion Behaviors of Aluminum Composite Reinforced With Carbon Nanotubes
,” Mater. Lett.
, 62
(15
), pp. 2301
–2303
. 10.1016/j.matlet.2007.11.086184.
Bonaccorso
, F.
, Colombo
, L.
, Yu
, G.
, Stoller
, M.
, Tozzini
, V.
, Ferrari
, A. C.
, Ruoff
, R. S.
, and Pellegrini
, V.
, 2015
, “Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage
,” Science
, 347
(6217
), p. 1246501
. 10.1126/science.1246501185.
Lee
, C.
, Wei
, X.
, Kysar
, J. W.
, and Hone
, J.
, 2008
, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,” Science
, 321
(5887
), pp. 385
–388
. 10.1126/science.1157996186.
Balandin
, A. A.
, 2011
, “Thermal Properties of Graphene and Nanostructured Carbon Materials
,” Nat. Mater.
, 10
(8
), p. 569
–581
. 10.1038/nmat3064187.
Potts
, J. R.
, Dreyer
, D. R.
, Bielawski
, C. W.
, and Ruoff
, R. S.
, 2011
, “Graphene-based Polymer Nanocomposites
,” Polymer
, 52
(1
), pp. 5
–25
. 10.1016/j.polymer.2010.11.042188.
Edwards
, R. S.
, and Coleman
, K. S.
, 2013
, “Graphene Synthesis: Relationship to Applications
,” Nanoscale
, 5
(1
), pp. 38
–51
. 10.1039/C2NR32629A189.
Zhu
, Y.
, Murali
, S.
, Cai
, W.
, Li
, X.
, Suk
, J. W.
, Potts
, J. R.
, and Ruoff
, R. S.
, 2010
, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications
,” Adv. Mater.
, 22
(35
), pp. 3906
–3924
. 10.1002/adma.201001068190.
Novoselov
, K. S.
, Fal
, V.
, Colombo
, L.
, Gellert
, P.
, Schwab
, M.
, and Kim
, K.
, 2012
, “A Roadmap for Graphene
,” Nature
, 490
(7419
), p. 192
–200
. 10.1038/nature11458191.
Zhang
, Y.
, Mark
, J. E.
, Zhu
, Y.
, Ruoff
, R. S.
, and Schaefer
, D. W.
, 2014
, “Mechanical Properties of Polybutadiene Reinforced With Octadecylamine Modified Graphene Oxide
,” Polymer
, 55
(21
), pp. 5389
–5395
. 10.1016/j.polymer.2014.08.065192.
Wu
, S.
, Ladani
, R. B.
, Zhang
, J.
, Bafekrpour
, E.
, Ghorbani
, K.
, Mouritz
, A. P.
, Kinloch
, A. J.
, and Wang
, C. H.
, 2015
, “Aligning Multilayer Graphene Flakes With an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites
,” Carbon
, 94
, pp. 607
–618
. 10.1016/j.carbon.2015.07.026193.
Li
, Z.
, Chu
, J.
, Yang
, C.
, Hao
, S.
, Bissett
, M. A.
, Kinloch
, I. A.
, and Young
, R. J.
, 2018
, “Effect of Functional Groups on the Agglomeration of Graphene in Nanocomposites
,” Compos. Sci. Technol.
, 163
, pp. 116
–122
. 10.1016/j.compscitech.2018.05.016194.
Kim
, H.
, and Macosko
, C. W.
, 2009
, “Processing-property Relationships of Polycarbonate/Graphene Composites
,” Polymer
, 50
(15
), pp. 3797
–3809
. 10.1016/j.polymer.2009.05.038195.
Kim
, H.
, and Macosko
, C. W.
, 2008
, “Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites
,” Macromolecules
, 41
(9
), pp. 3317
–3327
. 10.1021/ma702385h196.
Wakabayashi
, K.
, Pierre
, C.
, Dikin
, D. A.
, Ruoff
, R. S.
, Ramanathan
, T.
, Brinson
, L. C.
, and Torkelson
, J. M.
, 2008
, “Polymer−Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization
,” Macromolecules
, 41
(6
), pp. 1905
–1908
. 10.1021/ma071687b197.
Klüppel
, M.
, 2003
, “The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales,” Filler-Reinforced Elastomers/Sanning Force Microscopy
, B.
Capella
, M.
Geuss
, M.
Klüppel
, M.
Munz
, E.
Schulz
, and H.
Sturm
, eds., Springer
, New York
, pp. 1
–86
.198.
Paul
, D.
, and Robeson
, L. M.
, 2008
, “Polymer Nanotechnology: Nanocomposites
,” Polymer
, 49
(15
), pp. 3187
–3204
. 10.1016/j.polymer.2008.04.017199.
Schadler
, L.
, Giannaris
, S. a.
, and Ajayan
, P.
, 1998
, “Load Transfer in Carbon Nanotube Epoxy Composites
,” Appl. Phys. Lett.
, 73
(26
), pp. 3842
–3844
. 10.1063/1.122911200.
Rafiee
, M. A.
, Rafiee
, J.
, Srivastava
, I.
, Wang
, Z.
, Song
, H.
, Yu
, Z. Z.
, and Koratkar
, N.
, 2010
, “Fracture and Fatigue in Graphene Nanocomposites
,” Small
, 6
(2
), pp. 179
–183
. 10.1002/smll.200901480201.
Pötschke
, P.
, Abdel-Goad
, M.
, Pegel
, S.
, Jehnichen
, D.
, Mark
, J. E.
, Zhou
, D.
, and Heinrich
, G.
, 2009
, “Comparisons among Electrical and Rheological Properties of Melt-Mixed Composites Containing Various Carbon Nanostructures
,” J. Macromol. Sci. Part A
, 47
(1
), pp. 12
–19
. 10.1080/10601320903394397202.
Wei
, J.
, Atif
, R.
, Vo
, T.
, and Inam
, F.
, 2015
, “Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites
,” J. Nanomater.
, 16
, pp. 374
.203.
Li
, Z.
, Wang
, R.
, Young
, R. J.
, Deng
, L.
, Yang
, F.
, Hao
, L.
, Jiao
, W.
, and Liu
, W.
, 2013
, “Control of the Functionality of Graphene Oxide for Its Application in Epoxy Nanocomposites
,” Polymer
, 54
(23
), pp. 6437
–6446
. 10.1016/j.polymer.2013.09.054204.
Salom
, C.
, Prolongo
, M.
, Toribio
, A.
, Martínez-Martínez
, A.
, de Cárcer
, I. A.
, and Prolongo
, S.
, 2018
, “Mechanical Properties and Adhesive Behavior of Epoxy-Graphene Nanocomposites
,” Int. J. Adhes. Adhes.
, 84
, pp. 119
–125
. 10.1016/j.ijadhadh.2017.12.004205.
Corcione
, C. E.
, Freuli
, F.
, and Maffezzoli
, A.
, 2013
, “The Aspect Ratio of Epoxy Matrix Nanocomposites Reinforced With Graphene Stacks
,” Polym. Eng. Sci.
, 53
(3
), pp. 531
–539
. 10.1002/pen.23292206.
Tang
, L.-C.
, Wan
, Y.-J.
, Yan
, D.
, Pei
, Y.-B.
, Zhao
, L.
, Li
, Y.-B.
, Wu
, L.-B.
, Jiang
, J.-X.
, and Lai
, G.-Q.
, 2013
, “The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites
,” Carbon
, 60
, pp. 16
–27
. 10.1016/j.carbon.2013.03.050207.
Rafiee
, M. A.
, Rafiee
, J.
, Wang
, Z.
, Song
, H.
, Yu
, Z.-Z.
, and Koratkar
, N.
, 2009
, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,” ACS Nano
, 3
(12
), pp. 3884
–3890
. 10.1021/nn9010472208.
Wei
, J.
, and Inam
, F.
, 2017
, “Processing of Epoxy/Graphene Nanocomposites: Effects of Surfactants
,” J. Polym. Sci. Appl.
, 1
(1
), pp. 1
–7
.209.
Hong
, N.
, Zhan
, J.
, Wang
, X.
, Stec
, A. A.
, Hull
, T. R.
, Ge
, H.
, Xing
, W.
, Song
, L.
, and Hu
, Y.
, 2014
, “Enhanced Mechanical, Thermal and Flame Retardant Properties by Combining Graphene Nanosheets and Metal Hydroxide Nanorods for Acrylonitrile–Butadiene–Styrene Copolymer Composite
,” Compos. Part A: Appl. Sci. Manuf.
, 64
, pp. 203
–210
. 10.1016/j.compositesa.2014.04.015210.
Potts
, J. R.
, Lee
, S. H.
, Alam
, T. M.
, An
, J.
, Stoller
, M. D.
, Piner
, R. D.
, and Ruoff
, R. S.
, 2011
, “Thermomechanical Properties of Chemically Modified Graphene/Poly (Methyl Methacrylate) Composites Made by In Situ Polymerization
,” Carbon
, 49
(8
), pp. 2615
–2623
. 10.1016/j.carbon.2011.02.023211.
Lago
, E.
, Toth
, P. S.
, Pugliese
, G.
, Pellegrini
, V.
, and Bonaccorso
, F.
, 2016
, “Solution Blending Preparation of Polycarbonate/Graphene Composite: Boosting the Mechanical and Electrical Properties
,” RSC Adv.
, 6
(100
), pp. 97931
–97940
. 10.1039/C6RA21962D212.
El Achaby
, M.
, and Qaiss
, A.
, 2013
, “Processing and Properties of Polyethylene Reinforced by Graphene Nanosheets and Carbon Nanotubes
,” Mater. Des.
, 44
, pp. 81
–89
.213.
Kim
, H.
, Kobayashi
, S.
, AbdurRahim
, M. A.
, Zhang
, M. J.
, Khusainova
, A.
, Hillmyer
, M. A.
, Abdala
, A. A.
, and Macosko
, C. W.
, 2011
, “Graphene/Polyethylene Nanocomposites: Effect of Polyethylene Functionalization and Blending Methods
,” Polymer
, 52
(8
), pp. 1837
–1846
. 10.1016/j.polymer.2011.02.017214.
Piana
, F.
, and Pionteck
, J.
, 2013
, “Effect of the Melt Processing Conditions on the Conductive Paths Formation in Thermoplastic Polyurethane/Expanded Graphite (TPU/EG) Composites
,” Compos. Sci. Technol.
, 80
, pp. 39
–46
. 10.1016/j.compscitech.2013.03.002215.
Zhao
, X.
, Zhang
, Q.
, Chen
, D.
, and Lu
, P.
, 2010
, “Enhanced Mechanical Properties of Graphene-Based Poly (Vinyl Alcohol) Composites
,” Macromolecules
, 43
(5
), pp. 2357
–2363
. 10.1021/ma902862u216.
Zaman
, I.
, Phan
, T. T.
, Kuan
, H.-C.
, Meng
, Q.
, La
, L. T. B.
, Luong
, L.
, Youssf
, O.
, and Ma
, J.
, 2011
, “Epoxy/Graphene Platelets Nanocomposites With Two Levels of Interface Strength
,” Polymer
, 52
(7
), pp. 1603
–1611
. 10.1016/j.polymer.2011.02.003217.
Leininger
, W.
, Wang
, X.
, and Tangpong
, X.
, 2014
, “Effects of MWCNT Reinforcement on Quasi-Static and Dynamic Tensile Properties of Epoxy
,” J. Compos. Mater.
, 48
(17
), pp. 2049
–2057
. 10.1177/0021998313494102218.
Domun
, N.
, Hadavinia
, H.
, Zhang
, T.
, Sainsbury
, T.
, Liaghat
, G.
, and Vahid
, S.
, 2015
, “Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials—A Review of the Current Status
,” Nanoscale
, 7
(23
), pp. 10294
–10329
. 10.1039/C5NR01354B219.
Rafiee
, M. A.
, Lu
, W.
, Thomas
, A. V.
, Zandiatashbar
, A.
, Rafiee
, J.
, Tour
, J. M.
, and Koratkar
, N. A.
, 2010
, “Graphene Nanoribbon Composites
,” ACS Nano
, 4
(12
), pp. 7415
–7420
. 10.1021/nn102529n220.
Wang
, J.
, Li
, Z.
, Fan
, G.
, Pan
, H.
, Chen
, Z.
, and Zhang
, D.
, 2012
, “Reinforcement With Graphene Nanosheets in Aluminum Matrix Composites
,” Scr. Mater.
, 66
(8
), pp. 594
–597
. 10.1016/j.scriptamat.2012.01.012221.
Pérez-Bustamante
, R.
, Bolaños-Morales
, D.
, Bonilla-Martínez
, J.
, Estrada-Guel
, I.
, and Martínez-Sánchez
, R.
, 2014
, “Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying
,” J. Alloys Compd.
, 615
, pp. S578
–S582
. 10.1016/j.jallcom.2014.01.225222.
Ashwath
, P.
, and Xavior
, M. A.
, 2014
, “The Effect of Ball Milling & Reinforcement Percentage on Sintered Samples of Aluminium Alloy Metal Matrix Composites
,” Proc. Eng.
, 97
, pp. 1027
–1032
. 10.1016/j.proeng.2014.12.380223.
Bartolucci
, S. F.
, Paras
, J.
, Rafiee
, M. A.
, Rafiee
, J.
, Lee
, S.
, Kapoor
, D.
, and Koratkar
, N.
, 2011
, “Graphene–Aluminum Nanocomposites
,” Mater. Sci. Eng. A
, 528
(27
), pp. 7933
–7937
. 10.1016/j.msea.2011.07.043224.
Li
, Z.
, Fan
, G.
, Tan
, Z.
, Guo
, Q.
, Xiong
, D.
, Su
, Y.
, Li
, Z.
, and Zhang
, D.
, 2014
, “Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminum Composites
,” Nanotechnology
, 25
(32
), pp. 325601
. 10.1088/0957-4484/25/32/325601225.
Rashad
, M.
, Pan
, F.
, Tang
, A.
, Asif
, M.
, She
, J.
, Gou
, J.
, Mao
, J.
, and Hu
, H.
, 2015
, “Development of Magnesium-Graphene Nanoplatelets Composite
,” J. Compos. Mater.
, 49
(3
), pp. 285
–293
. 10.1177/0021998313518360226.
Kuang
, D.
, Xu
, L.
, Liu
, L.
, Hu
, W.
, and Wu
, Y.
, 2013
, “Graphene–Nickel Composites
,” Appl. Surf. Sci.
, 273
, pp. 484
–490
. 10.1016/j.apsusc.2013.02.066227.
Zhai
, W.
, Shi
, X.
, Yao
, J.
, Ibrahim
, A. M. M.
, Xu
, Z.
, Zhu
, Q.
, Xiao
, Y.
, Chen
, L.
, and Zhang
, Q.
, 2015
, “Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites
,” Compos. Part B: Eng.
, 70
, pp. 149
–155
. 10.1016/j.compositesb.2014.10.052228.
Arsenault
, R.
, and Shi
, N.
, 1986
, “Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion
,” Mater. Sci. Eng.
, 81
, pp. 175
–187
. 10.1016/0025-5416(86)90261-2229.
Rashad
, M.
, Pan
, F.
, and Asif
, M.
, 2015
, “Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets
,” Mater. Sci. Eng.: A
, 630
, pp. 36
–44
.230.
Kumar
, C. P.
, Venkatesha
, T.
, and Shabadi
, R.
, 2013
, “Preparation and Corrosion Behavior of Ni and Ni–Graphene Composite Coatings
,” Mater. Res. Bull.
, 48
(4
), pp. 1477
–1483
. 10.1016/j.materresbull.2012.12.064231.
Ren
, Z.
, Meng
, N.
, Shehzad
, K.
, Xu
, Y.
, Qu
, S.
, Yu
, B.
, and Luo
, J. K.
, 2015
, “Mechanical Properties of Nickel-Graphene Composites Synthesized by Electrochemical Deposition
,” Nanotechnology
, 26
(6
), pp. 065706
. 10.1088/0957-4484/26/6/065706232.
Lin
, D.
, Liu
, C. R.
, and Cheng
, G. J.
, 2014
, “Single-layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement
,” Acta Mater.
, 80
, pp. 183
–193
. 10.1016/j.actamat.2014.07.038233.
Bastwros
, M.
, Kim
, G.-Y.
, Zhang
, K.
, and Wang
, S.
, 2013
, “Fabrication of Graphene Reinforced Aluminum Composite by Semi-Solid Processing
,” ASME 2013 International Mechanical Engineering Congress and Exposition
, San Diego, CA
, Nov.15–21
, p. V02BT02A030.234.
Song
, Y.
, Liu
, W.
, and Chen
, Y.
, 2017
, “Strengthening in a Copper Composite Containing Graphene Nanofillers
,” AMRA 2016
, Guangzhou, China
, Dec. 18–21, 2016
, p. 012017
.235.
Chen
, L.-Y.
, Konishi
, H.
, Fehrenbacher
, A.
, Ma
, C.
, Xu
, J.-Q.
, Choi
, H.
, Xu
, H.-F.
, Pfefferkorn
, F. E.
, and Li
, X.-C.
, 2012
, “Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites
,” Scr. Mater.
, 67
(1
), pp. 29
–32
. 10.1016/j.scriptamat.2012.03.013236.
Hwang
, J.
, Yoon
, T.
, Jin
, S. H.
, Lee
, J.
, Kim
, T. S.
, Hong
, S. H.
, and Jeon
, S.
, 2013
, “Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process
,” Adv. Mater.
, 25
(46
), pp. 6724
–6729
. 10.1002/adma.201302495237.
Tang
, Y.
, Yang
, X.
, Wang
, R.
, and Li
, M.
, 2014
, “Enhancement of the Mechanical Properties of Graphene–Copper Composites With Graphene–Nickel Hybrids
,” Mater. Sci. Eng. A
, 599
, pp. 247
–254
. 10.1016/j.msea.2014.01.061238.
Lim
, B.
, Kim
, C.-j.
, Kim
, B.
, Shim
, U.
, Oh
, S.
, Sung
, B.-h.
, Choi
, J.-h.
, and Baik
, S.
, 2006
, “The Effects of Interfacial Bonding on Mechanical Properties of Single-Walled Carbon Nanotube Reinforced Copper Matrix Nanocomposites
,” Nanotechnology
, 17
(23
), pp. 5759
–5764
. 10.1088/0957-4484/17/23/008239.
Xu
, Z.
, and Buehler
, M. J.
, 2010
, “Interface Structure and Mechanics Between Graphene and Metal Substrates: A First-Principles Study
,” J. Phys.: Condens. Matter
, 22
(48
), p. 485301
. 10.1088/0953-8984/22/48/485301240.
Rashad
, M.
, Pan
, F.
, Tang
, A.
, Lu
, Y.
, Asif
, M.
, Hussain
, S.
, She
, J.
, Gou
, J.
, and Mao
, J.
, 2013
, “Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys
,” J. Magnesium Alloys
, 1
(3
), pp. 242
–248
. 10.1016/j.jma.2013.09.004241.
Yan
, S. J.
, Yang
, C.
, Hong
, Q. H.
, Chen
, J.-z.
, Liu
, D. B.
, and Dai
, S. L.
, 2011
, “Research of Graphene-Reinforced Aluminum Matrix Nanocomposites
,” J. Mater. Eng.
, 1
(4
), pp. 1
–6
.242.
Jeon
, C.-H.
, Jeong
, Y.-H.
, Seo
, J.-J.
, Tien
, H. N.
, Hong
, S.-T.
, Yum
, Y.-J.
, Hur
, S.-H.
, and Lee
, K.-J.
, 2014
, “Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing
,” Int. J. Precis. Eng. Manuf.
, 15
(6
), pp. 1235
–1239
. 10.1007/s12541-014-0462-2243.
Li
, J.
, Xiong
, Y.
, Wang
, X.
, Yan
, S.
, Yang
, C.
, He
, W.
, Chen
, J. Z.
, Wang
, S. Q.
, Zhang
, X. Y.
, and Dai
, S. L.
, 2015
, “Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling
,” Mater. Sci. Eng. A
, 626
, pp. 400
–405
. 10.1016/j.msea.2014.12.102244.
Koltsova
, T. S.
, Nasibulina
, L. I.
, Anoshkin
, I. V.
, Mishin
, V. V.
, Kauppinen
, E. I.
, Tolochko
, O. V.
, and Nasibulin
, A. G.
, 2012
, “New Hybrid Copper Composite Materials Based on Carbon Nanostructures
,” J. Mater. Sci. Eng. B
, 2
(4
), pp. 240
–246
.245.
Pavithra
, C. L.
, Sarada
, B. V.
, Rajulapati
, K. V.
, Rao
, T. N.
, and Sundararajan
, G.
, 2014
, “A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils With High Hardness
,” Sci. Rep.
, 4
(1
), p. 4049
. 10.1038/srep04049246.
Li
, M.
, Che
, H.
, Liu
, X.
, Liang
, S.
, and Xie
, H.
, 2014
, “Highly Enhanced Mechanical Properties in Cu Matrix Composites Reinforced With Graphene Decorated Metallic Nanoparticles
,” J. Mater. Sci.
, 49
(10
), pp. 3725
–3731
. 10.1007/s10853-014-8082-x247.
Xiong
, D.-B.
, Cao
, M.
, Guo
, Q.
, Tan
, Z.
, Fan
, G.
, Li
, Z.
, and Zhang
, D.
, 2015
, “Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite
,” ACS Nano
, 9
(7
), pp. 6934
–6943
. 10.1021/acsnano.5b01067248.
Zhao
, C.
, and Wang
, J.
, 2014
, “Fabrication and Tensile Properties of Graphene/Copper Composites Prepared by Electroless Plating for Structrual Applications
,” Phys. Status Solidi (a)
, 211
(12
), pp. 2878
–2885
. 10.1002/pssa.201431478249.
Rashad
, M.
, Pan
, F.
, Asif
, M.
, and Tang
, A.
, 2014
, “Powder Metallurgy of Mg–1% Al–1% Sn Alloy Reinforced With Low Content of Graphene Nanoplatelets (GNPs)
,” J. Ind. Eng. Chem.
, 20
(6
), pp. 4250
–4255
. 10.1016/j.jiec.2014.01.028250.
Giannelis
, E. P.
, 1992
, “A new Strategy for Synthesizing Polymer-Ceramic Nanocomposites
,” JOM
, 44
(3
), pp. 28
–30
. 10.1007/BF03222789251.
Kojima
, Y.
, Usuki
, A.
, Kawasumi
, M.
, Okada
, A.
, Kurauchi
, T.
, and Kamigaito
, O.
, 1993
, “Sorption of Water in Nylon 6-Clay Hybrid
,” J. Appl. Polym. Sci.
, 49
(7
), pp. 1259
–1264
. 10.1002/app.1993.070490715252.
Vaia
, R. A.
, Ishii
, H.
, and Giannelis
, E. P.
, 1993
, “Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates
,” Chem. Mater.
, 5
(12
), pp. 1694
–1696
. 10.1021/cm00036a004253.
Messersmith
, P. B.
, and Giannelis
, E. P.
, 1994
, “Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites
,” Chem. Mater.
, 6
(10
), pp. 1719
–1725
. 10.1021/cm00046a026254.
Biasci
, L.
, Aglietto
, M.
, Ruggeri
, G.
, and Ciardelli
, F.
, 1994
, “Functionalization of Montmorillonite by Methyl Methacrylate Polymers Containing Side-Chain Ammonium Cations
,” Polymer
, 35
(15
), pp. 3296
–3304
. 10.1016/0032-3861(94)90138-4255.
Jimenez
, G.
, Ogata
, N.
, Kawai
, H.
, and Ogihara
, T.
, 1997
, “Structure and Thermal/Mechanical Properties of Poly (ɛ-Caprolactone)-Clay Blend
,” J. Appl. Polym. Sci.
, 64
(11
), pp. 2211
–2220
.256.
Kurokawa
, Y.
, Yasuda
, H.
, Kashiwagi
, M.
, and Oyo
, A.
, 1997
, “Structure and Properties of a Montmorillonite/Polypropylene Nanocomposite
,” J. Mater. Sci. Lett.
, 16
(20
), pp. 1670
–1672
. 10.1023/A:1018526131023257.
Wang
, Z.
, and Pinnavaia
, T. J.
, 1998
, “Nanolayer Reinforcement of Elastomeric Polyurethane
,” Chem. Mater.
, 10
(12
), pp. 3769
–3771
. 10.1021/cm980448n258.
Zhu
, Z. K.
, Yang
, Y.
, Yin
, J.
, Wang
, X. Y.
, Ke
, Y. C.
, and Qi
, Z. N.
, 1999
, “Preparation and Properties of Organosoluble Montmorillonite/Polyimide Hybrid Materials
,” J. Appl. Polym. Sci.
, 73
(11
), pp. 2063
–2068
.259.
Agubra
, V.
, Owuor
, P.
, and Hosur
, M.
, 2013
, “Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites
,” Nanomaterials
, 3
(3
), pp. 550
–563
. 10.3390/nano3030550260.
Choi
, R. N.
, Cheigh
, C. I.
, Lee
, S. Y.
, and Chung
, M. S.
, 2011
, “Preparation and Properties of Polypropylene/Clay Nanocomposites for Food Packaging
,” J. Food Sci.
, 76
(8
), pp. N62
–N67
. 10.1111/j.1750-3841.2011.02351.x261.
Wang
, L.
, Wang
, K.
, Chen
, L.
, Zhang
, Y.
, and He
, C.
, 2006
, “Preparation, Morphology and Thermal/Mechanical Properties of Epoxy/Nanoclay Composite
,” Compos. Part A: Appl. Sci. Manuf.
, 37
(11
), pp. 1890
–1896
. 10.1016/j.compositesa.2005.12.020262.
Peeterbroeck
, S.
, Alexandre
, M.
, Jérôme
, R.
, and Dubois
, P.
, 2005
, “Poly (Ethylene-co-Vinyl Acetate)/Clay Nanocomposites: Effect of Clay Nature and Organic Modifiers on Morphology, Mechanical and Thermal Properties
,” Polym. Degrad. Stab.
, 90
(2
), pp. 288
–294
. 10.1016/j.polymdegradstab.2005.03.023263.
Abbasi
, S.
, Carreau
, P. J.
, Derdouri
, A.
, and Moan
, M.
, 2009
, “Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate
,” Rheol. Acta
, 48
(9
), p. 943
–959
. 10.1007/s00397-009-0375-7264.
Khalaj
, M.-J.
, Ahmadi
, H.
, Lesankhosh
, R.
, and Khalaj
, G.
, 2016
, “Study of Physical and Mechanical Properties of Polypropylene Nanocomposites for Food Packaging Application: Nano-Clay Modified With Iron Nanoparticles
,” Trends Food Sci. Technol.
, 51
, pp. 41
–48
. 10.1016/j.tifs.2016.03.007265.
Fornes
, T.
, Yoon
, P.
, Keskkula
, H.
, and Paul
, D.
, 2001
, “Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight
,” Polymer
, 42
(25
), pp. 09929
–09940
. 10.1016/S0032-3861(01)00552-3266.
Finnigan
, B.
, Martin
, D.
, Halley
, P.
, Truss
, R.
, and Campbell
, K.
, 2004
, “Morphology and Properties of Thermoplastic Polyurethane Nanocomposites Incorporating Hydrophilic Layered Silicates
,” Polymer
, 45
(7
), pp. 2249
–2260
. 10.1016/j.polymer.2004.01.049267.
Zamanian
, M.
, Mortezaei
, M.
, Salehnia
, B.
, and Jam
, J.
, 2013
, “Fracture Toughness of Epoxy Polymer Modified With Nanosilica Particles: Particle Size Effect
,” Eng. Fract. Mech.
, 97
, pp. 193
–206
. 10.1016/j.engfracmech.2012.10.027268.
Johnsen
, B.
, Kinloch
, A.
, Mohammed
, R.
, Taylor
, A.
, and Sprenger
, S.
, 2007
, “Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers
,” Polymer
, 48
(2
), pp. 530
–541
. 10.1016/j.polymer.2006.11.038269.
Svoboda
, P.
, Zeng
, C.
, Wang
, H.
, Lee
, L. J.
, and Tomasko
, D. L.
, 2002
, “Morphology and Mechanical Properties of Polypropylene/Organoclay Nanocomposites
,” J. Appl. Polym. Sci.
, 85
(7
), pp. 1562
–1570
. 10.1002/app.10789270.
Singh
, S. K.
, Kumar
, A.
, and Jain
, A.
, 2018
, “Improving Tensile and Flexural Properties of SiO2-Epoxy Polymer Nanocomposite
,” Mater. Today: Proc.
, 5
(2
), pp. 6339
–6344
. 10.1016/j.matpr.2017.12.243271.
Hsieh
, T.
, Kinloch
, A.
, Masania
, K.
, Taylor
, A.
, and Sprenger
, S.
, 2010
, “The Mechanisms and Mechanics of the Toughening of Epoxy Polymers Modified With Silica Nanoparticles
,” Polymer
, 51
(26
), pp. 6284
–6294
. 10.1016/j.polymer.2010.10.048272.
Blackman
, B.
, Kinloch
, A.
, Lee
, J. S.
, Taylor
, A.
, Agarwal
, R.
, Schueneman
, G.
, and Sprenger
, S.
, 2007
, “The Fracture and Fatigue Behaviour of Nano-Modified Epoxy Polymers
,” J. Mater. Sci.
, 42
(16
), pp. 7049
–7051
. 10.1007/s10853-007-1768-6273.
Eustathopoulos
, N.
, Nicholas
, M. G.
, and Drevet
, B.
, 1999
, Wettability at High Temperatures
, Vol. 3
, Elsevier
, New York
.274.
Aikin
, R.
, 1997
, “The Mechanical Properties of in-Situ Composites
,” JOM
, 49
(8
), p. 35
–39
. 10.1007/BF02914400275.
Zhao
, Y.-T.
, Zhang
, S.-L.
, Chen
, G.
, Cheng
, X.-N.
, and Wang
, C.-Q.
, 2008
, “In Situ (Al2O3+ Al3Zr)np/Al Nanocomposites Synthesized by Magneto-Chemical Melt Reaction
,” Compos. Sci. Technol.
, 68
(6
), pp. 1463
–1470
. 10.1016/j.compscitech.2007.10.036276.
Stinton
, D.P.
, Besmann
, T.M.
, and Lowden
, R.A.
, 1988
, “Chemical Vapor Deposition Techniques
,” MRS Bulletin
, 13
(11
), pp. 45
–51
.277.
Tjong
, S.
, and Chen
, H.
, 2004
, “Nanocrystalline Materials and Coatings
,” Mater. Sci. Eng.: R: Rep.
, 45
(1–2
), pp. 1
–88
. 10.1016/j.mser.2004.07.001278.
Alexandrescu
, R.
, Borsella
, E.
, Botti
, S.
, Cesile
, M.
, Martelli
, S.
, Giorgi
, R.
, TURTU
S
, ZAPPA
G
, 1997
, “Synthesis of TiC and SiC/TiC Nanocrystalline Powders by Gas-Phase Laser-Induced Reaction
,” J. Mater. Sci.
, 32
(21
), pp. 5629
–5635
. 10.1023/A:1018640911556279.
Koli
, D. K.
, Agnihotri
, G.
, and Purohit
, R.
, 2013
, “Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes
,” Int. J. Latest Trends Eng. Technol.
, 2
(4
), pp. 486
–496
.280.
Sajjadi
, S. A.
, and Zebarjad
, S. M.
, 2008
, “Synthesis of Al-Al2O3 Nano-Composite by Mechanical Alloying and Evaluation of the Effect of Ball Milling Time on the Microstructure and Mechanical Properties
,” ICMN08.
, Kuala Lumpur, Malaysia
, May 13–15
.281.
Zeng
, X.
, Liu
, W.
, Xu
, B.
, Shu
, G.
, and Li
, Q.
, 2018
, “Microstructure and Mechanical Properties of Al–SiC Nanocomposites Synthesized by Surface-Modified Aluminium Powder
,” Metals
, 8
(4
), p. 253
. 10.3390/met8040253282.
Kang
, Y.-C.
, and Chan
, S. L.-I.
, 2004
, “Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites
,” Mater. Chem. Phys.
, 85
(2–3
), pp. 438
–443
. 10.1016/j.matchemphys.2004.02.002283.
Jia
, D.
, 2000
, “Influence of SiC Particulate Size on the Microstructural Evolution and Mechanical Properties of Al–6Ti–6Nb Matrix Composites
,” Mater. Sci. Eng. A
, 289
(1–2
), pp. 83
–90
. 10.1016/S0921-5093(00)00897-2284.
Tang
, F.
, Hagiwara
, M.
, and Schoenung
, J. M.
, 2005
, “Microstructure and Tensile Properties of Bulk Nanostructured Al-5083/SiCp Composites Prepared by Cryomilling
,” Mater. Sci. Eng. A
, 407
(1–2
), pp. 306
–314
. 10.1016/j.msea.2005.07.056285.
Hsu
, C.
, Chang
, C.
, Kao
, P.
, Ho
, N.
, and Chang
, C.
, 2006
, “Al–Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing
,” Acta Mater.
, 54
(19
), pp. 5241
–5249
. 10.1016/j.actamat.2006.06.054286.
Rai
, R.
, Saha
, S.
, Datta
, G.
, and Chakraborty
, M.
, 2016
, “Studies on Synthesis of In-Situ Al-TiC Metal Matrix Composites
,” ICASP-4
, Windsor, UK
, July 8–11, 2014
, p. 012042
.287.
Poovazhagan
, L.
, Kalaichelvan
, K.
, and Rajadurai
, A.
, 2014
, “Preparation of SiC Nano-Particulates Reinforced Aluminum Matrix Nanocomposites by High Intensity Ultrasonic Cavitation Process
,” Trans. Indian Inst. Met.
, 67
(2
), pp. 229
–237
. 10.1007/s12666-013-0340-0288.
Wong
, W. E.
, and Gupta
, M.
, 2006
, “Simultaneously Improving Strength and Ductility of Magnesium Using Nano-Size SiC Particulates and Microwaves
,” Adv. Eng. Mater.
, 8
(8
), pp. 735
–740
. 10.1002/adem.200500209289.
Cao
, G.
, Kobliska
, J.
, Konishi
, H.
, and Li
, X.
, 2008
, “Tensile Properties and Microstructure of SiC Nanoparticle–Reinforced Mg-4Zn Alloy Fabricated by Ultrasonic Cavitation–Based Solidification Processing
,” Metall. Mater. Trans. A
, 39
(4
), pp. 880
–886
. 10.1007/s11661-007-9453-6290.
Ferkel
, H.
, and Mordike
, B.
, 2001
, “Magnesium Strengthened by SiC Nanoparticles
,” Mater. Sci. Eng. A
, 298
(1–2
), pp. 193
–199
. 10.1016/S0921-5093(00)01283-1291.
Vanarotti
, M.
, Shrishail
, P.
, Sridhar
, B.R.
, Venkateswarlu
, K.
, and Kori
, S.A.
, 2014
, “Synthesis and Characterization of Aluminium Alloy A356 and Silicon Carbide Metal Matrix Composite
,” Procedia Materials Science
, 5
, pp. 873
–882
.292.
Boopathi
, M. M.
, Arulshri
, K.
, and Iyandurai
, N.
, 2013
, “Evaluation of Mechanical Properties of Aluminium Alloy 2024 Reinforced With Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites
,” Am. J. Appl. Sci.
, 10
(3
), p. 219
–229
. 10.3844/ajassp.2013.219.229293.
Yang
, Y.
, Lan
, J.
, and Li
, X.
, 2004
, “Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy
,” Mater. Sci. Eng. A
, 380
(1–2
), pp. 378
–383
. 10.1016/j.msea.2004.03.073294.
Kumar
, N. R.
, and Dwarakadasa
, E.
, 2000
, “Effect of Matrix Strength on the Mechanical Properties of Al–Zn–Mg/SiCP Composites
,” Compos. Part A: Appl. Sci. Manuf.
, 31
(10
), pp. 1139
–1145
.295.
Lee
, C.
, Huang
, J.
, and Hsieh
, P.
, 2006
, “Mg Based Nano-Composites Fabricated by Friction Stir Processing
,” Scr. Mater.
, 54
(7
), pp. 1415
–1420
. 10.1016/j.scriptamat.2005.11.056Copyright © 2020 by ASME
You do not currently have access to this content.