Abstract

Advanced industrial robotic assembly requires the process parameters to be tuned to achieve high efficiency: short assembly cycle (AC) time and high first-time throughput (FTT) rate. This task is usually undertaken offline because of the difficulties in real-time modeling and the lack of efficient algorithms. This paper proposes a support vector regression (SVR)-enabled method to optimize the assembly process parameters without interrupting the normal production process. To reduce the risk of obtaining a local minimum, we consider the trade-off between exploration and exploitation and propose an adaptive optimization process to balance the production processes and the optimization outcome. The proposed methods have been verified using a typical peg-in-hole robotic assembly process, and the results are compared with design of experiment (DOE) methods and genetic algorithm (GA) method in terms of efficiency and accuracy. The experimental results show that our methods are able to maintain the high FTT rate when it drops below 99%, shorten the average AC time by 3.4%, and reduce the number of assembly trials to find the optimized process parameters by 99.6%.

References

References
1.
Chen
,
H.
,
Wang
,
J.
,
Zhang
,
G.
,
Fuhlbrigge
,
T.
, and
Kock
,
S.
,
2009
, “
High-Precision Assembly Automation Based on Robot Compliance
,”
Int. J. Adv. Manuf. Technol.
,
45
(
9–10
), pp.
999
1006
. 10.1007/s00170-009-2041-8
2.
Meyer
,
F.
,
Spröwitz
,
A.
, and
Berthouze
,
L.
,
2006
, “
Passive Compliance for a rc Servo-Controlled Bouncing Robot
,”
Adv. Rob.
,
20
(
8
), pp.
953
961
. 10.1163/156855306777951429
3.
Lee
,
S.
,
2005
, “
Development of a New Variable Remote Center Compliance (VRCC) With Modified Elastomer Shear Pad (ESP) for Robot Assembly
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
2
), pp.
193
197
. 10.1109/TASE.2005.844437
4.
Bang
,
Y.-B.
,
Lee
,
K.-m.
,
Kook
,
J.
,
Lee
,
W.
, and
Kim
,
I.-S.
,
2005
, “
Micro Parts Assembly System With Micro Gripper and Rcc Unit
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
465
470
. 10.1109/TRO.2004.838028
5.
Brogårdh
,
T.
,
2007
, “
Present and Future Robot Control Development—An Industrial Perspective
,”
Ann. Rev. Control
,
31
(
1
), pp.
69
79
. 10.1016/j.arcontrol.2007.01.002
6.
Xu
,
Q.
,
2013
, “
Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
503
514
. 10.1109/TASE.2013.2239288
7.
Kesner
,
S.
, and
Howe
,
R.
,
2011
, “
Design Principles for Rapid Prototyping Forces Sensors Using 3-d Printing
,”
IEEE/ASME Trans. Mechatron.
,
16
(
5
), pp.
866
870
. 10.1109/TMECH.2011.2160353
8.
Chen
,
H.
,
Li
,
B.
,
Gravel
,
D.
,
Zhang
,
G.
, and
Zhang
,
B.
,
2015
, “
Robot Learning for Complex Manufacturing Process
,”
2015 IEEE International Conference on Industrial Technology (ICIT)
,
Seville, Spain
,
Mar. 17–19
,
IEEE
, pp.
3207
3211
.
9.
Kim
,
S.
,
Kim
,
J.-P.
, and
Ryu
,
J.
,
2014
, “
Adaptive Energy-Bounding Approach for Robustly Stable Interaction Control of Impedance-Controlled Industrial Robot With Uncertain Environments
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1195
1205
. 10.1109/TMECH.2013.2276935
10.
Nam
,
K.
,
Fujimoto
,
H.
, and
Hori
,
Y.
,
2014
, “
Advanced Motion Control of Electric Vehicles Based on Robust Lateral Tire Force Control via Active Front Steering
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
289
299
. 10.1109/TMECH.2012.2233210
11.
Li
,
B.
,
Cheng
,
H.
,
Chen
,
H.
, and
Jin
,
T.
,
2014
, “
Modeling Complex Robotic Assembly Process Using Gaussian Process Regression
,”
2014 IEEE 9th Conference on Industrial Electronics and Applications (ICIEA)
,
Hangzhou, China
,
June 9–11
,
IEEE
, pp.
456
461
.
12.
Östring
,
M.
,
2002
, “
Identification, Diagnosis, and Control of a Flexible Robot Arm
,”
Division of Automatic Control, Department of Electrical Engineering, Linköpings universitet
,
Linköping, Sweden
.
13.
Marvel
,
J.
, and
Newman
,
W.
,
2009
, “
Accelerating Robotic Assembly Parameter Optimization Through the Generation of Internal Models
,”
IEEE International Conference on Technologies for Practical Robot Applications (TePRA)
,
Woburn, MA
,
Nov. 9–10
, pp.
42
47
.
14.
Marvel
,
J. A.
, and
Newman
,
W. S.
,
2011
, “
Model-Assisted Stochastic Learning for Robotic Applications
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
4
), pp.
835
845
. 10.1109/TASE.2011.2159708
15.
Marvel
,
J. A.
,
Newman
,
W. S.
,
Gravel
,
D. P.
,
Zhang
,
G.
,
Wang
,
J.
, and
Fuhlbrigge
,
T.
,
2009
, “
Automated Learning for Parameter Optimization of Robotic Assembly Tasks Utilizing Genetic Algorithms
,”
IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
,
Feb. 22–25
, pp.
179
184
.
16.
Gravel
,
D.
,
Zhang
,
G.
,
Bell
,
A.
, and
Zhang
,
B.
,
2009
, “
Objective Metric Study for DOE-Based Parameter Optimization in Robotic Torque Converter Assembly
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
St. Louis, MO
,
Oct. 10–15
, pp.
3832
3837
.
17.
Zhang
,
B.
,
Gravel
,
D.
,
Wang
,
J.
, and
Bell
,
A.
,
2011
, “
Robotic Force Control Assembly Parameter Optimization for Adaptive Production
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
464
469
.
18.
Takahashi
,
J.
,
Fukukawa
,
T.
, and
Fukuda
,
T.
,
2016
, “
Passive Alignment Principle for Robotic Assembly Between a Ring and a Shaft With Extremely Narrow Clearance
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
196
204
. 10.1109/TMECH.2015.2448639
19.
Whitney
,
D. E.
,
1982
, “
Quasi-Static Assembly of Compliantly Supported Rigid Parts
,”
J. Dyn. Syst., Meas., Control
,
104
(
1
), pp.
65
77
. 10.1115/1.3149634
20.
Thomas
,
U.
,
Molkenstruck
,
S.
,
Iser
,
R.
, and
Wahl
,
F. M.
,
2007
, “
Multi Sensor Fusion in Robot Assembly Using Particle Filters
,”
2007 IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
,
IEEE
, pp.
3837
3843
.
21.
Jasim
,
I. F.
,
Plapper
,
P. W.
, and
Voos
,
H.
,
2014
, “
Position Identification in Force-Guided Robotic Peg-in-Hole Assembly Tasks
,”
Procedia Cirp
,
23
(
1
), pp.
217
222
. 10.1016/j.procir.2014.10.077
22.
Vapnik
,
V.
,
Golowich
,
S. E.
, and
Smola
,
A.
,
1997
, “
Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing
,”
Adv. Neural Inf. Process. Syst.
,
9
(
1
), pp.
281
287
.
23.
Salcedo-Sanz
,
S.
,
Ortiz-Garcıa
,
E. G.
,
Pérez-Bellido
,
Á. M.
,
Portilla-Figueras
,
A.
, and
Prieto
,
L.
,
2011
, “
Short Term Wind Speed Prediction Based on Evolutionary Support Vector Regression Algorithms
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4052
4057
. 10.1016/j.eswa.2010.09.067
24.
Wang
,
F.-K.
, and
Du
,
T.
,
2014
, “
Implementing Support Vector Regression With Differential Evolution to Forecast Motherboard Shipments
,”
Expert Syst. Appl.
,
41
(
8
), pp.
3850
3855
. 10.1016/j.eswa.2013.12.022
25.
Yu
,
P.-S.
,
Chen
,
S.-T.
, and
Chang
,
I.-F.
,
2006
, “
Support Vector Regression for Real-Time Flood Stage Forecasting
,”
J. Hydrol.
,
328
(
3
), pp.
704
716
. 10.1016/j.jhydrol.2006.01.021
26.
Abtahi
,
M.
,
Pendar
,
H.
,
Alasty
,
A.
, and
Vossoughi
,
G. R.
,
2009
, “
Calibration of Parallel Kinematic Machine Tools Using Mobility Constraint on the Tool Center Point
,”
Int. J. Adv. Manuf. Technol.
,
45
(
5–6
), pp.
531
539
. 10.1007/s00170-009-1994-y
27.
Chen
,
H.
,
Zhang
,
B.
,
Fuhlbrigge
,
T.
, and
Zhang
,
G.
,
2017
, “
Balancing Different Performance Indices in Complex Robotic Assembly Processes
,”
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, China
,
Dec. 5–8
, pp.
1708
1712
.
28.
Chen
,
L.
,
Zhou
,
M.
,
Wu
,
M.
,
She
,
J.
,
Liu
,
Z.
,
Dong
,
F.
, and
Hirota
,
K.
,
2018
, “
Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human-Robot Interaction
,”
IEEE Trans. Fuzzy Syst.
,
26
(
5
), pp.
2524
2538
.
29.
Purwins
,
H.
,
Barak
,
B.
,
Nagi
,
A.
,
Engel
,
R.
,
Hockele
,
U.
,
Kyek
,
A.
,
Cherla
,
S.
,
Lenz
,
B.
,
Pfeifer
,
G.
, and
Weinzierl
,
K.
,
2014
, “
Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
1
8
. 10.1109/TMECH.2013.2273435
30.
Hua
,
S.
, and
Sun
,
Z.
,
2001
, “
Support Vector Machine Approach for Protein Subcellular Localization Prediction
,”
Bioinformatics
,
17
(
8
), pp.
721
728
. 10.1093/bioinformatics/17.8.721
31.
Li
,
B.
,
Chen
,
H.
, and
Jin
,
T.
,
2014
, “
Industrial Robotic Assembly Process Modeling Using Support Vector Regression
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)
,
Chicago, IL
,
Sept. 14–18
,
IEEE
, pp.
4334
4339
.
32.
Thornton
,
C.
,
Hutter
,
F.
,
Hoos
,
H. H.
, and
Leyton-Brown
,
K.
,
2013
, “
Auto-Weka: Combined Selection and Hyperparameter Optimization of Classification Algorithms
,”
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Chicago, IL
,
Aug. 11–14
,
ACM
, pp.
847
855
.
33.
Bergstra
,
J.
,
Yamins
,
D.
, and
Cox
,
D. D.
,
2013
, “
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
,”
Proceedings of the 30th International Conference on Machine Learning, JMLR
,
Atlanta, GA
,
June 16–21
.
34.
Schölkopf
,
B.
,
Burges
,
C. J.
, and
Smola
,
A. J.
,
1999
,
Advances in Kernel Methods: Support Vector Learning
,
MIT Press
,
Cambridge, MA
.
35.
Pontes
,
F. J.
,
Amorim
,
G.
,
Balestrassi
,
P. P.
,
Paiva
,
A.
, and
Ferreira
,
J. R.
,
2016
, “
Design of Experiments and Focused Grid Search for Neural Network Parameter Optimization
,”
Neurocomputing
,
186
(
1
), pp.
22
34
. 10.1016/j.neucom.2015.12.061
36.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
281
305
.
37.
Mattera
,
D.
, and
Haykin
,
S.
,
1999
,
Advances in Kernel Methods
,
MIT Press
,
Cambridge, MA
, pp.
211
241
.
38.
Cherkassky
,
V.
, and
Ma
,
Y.
,
2004
, “
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
,”
Neural Networks
,
17
(
1
), pp.
113
126
. 10.1016/S0893-6080(03)00169-2
39.
March
,
J. G.
,
1991
, “
Exploration and Exploitation in Organizational Learning
,”
Organ. Sci.
,
2
(
1
), pp.
71
87
. 10.1287/orsc.2.1.71
40.
Wang
,
L.
,
Chen
,
X.
,
Zhao
,
Z.
, and
Zhang
,
H.
,
2011
, “
Exploration vs Exploitation for Distributed Channel Access in Cognitive Radio Networks: A Multi-User Case Study
,”
11th International Symposium on Communications and Information Technologies (ISCIT)
, pp.
360
365
.
41.
Lai
,
L.
,
El-Gamal
,
H.
,
Jiang
,
H.
, and
Poor
,
H.
,
2011
, “
Cognitive Medium Access: Exploration, Exploitation, and Competition
,”
IEEE Trans. Mobile Comput.
,
10
(
2
), pp.
239
253
. 10.1109/TMC.2010.65
You do not currently have access to this content.