To improve the efficiency of flat optics fabrication, a global correction method with the patterned polishing pad is developed in this paper. Through creating grooves on a polishing pad, the contact pressure distribution on the optics surface can be adjusted to change the material removal rate (MRR) distribution during polishing. Using the patterned pad, the selective removal ability of the polishing process is greatly enhanced. The predictability and stability of the MRR distribution are the preconditions to efficiently implement the proposed global correction method. Relying on the MRR distribution prediction method proposed and validated in this paper, the pad pattern can be designed based on the original surface figure of the workpieces. The designed groove pattern is created on the polishing pad using the custom-developed equipment. Then, the optical glass is polished on the designed pad with the optimized polishing time. A flat optical glass sample (Φ 100 mm) is polished with the global correction method to show its feasibility and advantage. The correction instance shows that the peak-to-valley (PV) value of the surface profile (with 3 mm edge exclusion) dropped from 1.17 µm to 0.2 µm in 14 min using a polyurethane pad with two ring grooves. Comparing with the conventional polishing process, which usually takes hours or days, the global correction method proposed in this paper can improve the efficiency of the optics manufacturing significantly.

References

References
1.
Campbell
,
J. H.
,
Hawley
,
R. S.
,
Stolz
,
C. J.
,
Menapace
,
J. A.
,
Borden
,
M. R.
,
Whitman
,
P.
,
Yu
,
J.
,
Runkel
,
M. J.
,
Riley
,
M.
,
Feit
,
M.
, and
Hackel
,
R.
,
2004
, “
NIF Optical Materials and Fabrication Technologies: An Overview
,”
SPIE 2004 Photonics West
,
San Jose, CA
,
Jan. 25–29
, p.
155471
.
2.
Li
,
Z.
,
Chen
,
X.
,
Wang
,
S.
, and
Jin
,
G.
,
2017
, “
Optimal Design of a Φ760 mm Lightweight SiC Mirror and the Flexural Mount for a Space Telescope
,”
Rev. Sci. Instrum.
,
88
(
12
), pp.
125107
.
3.
Muratov
,
K. R.
,
Ablyaz
,
T. R.
,
Gashev
,
E. A.
,
Khanov
,
A. M.
, and
Varlamov
,
N. V.
,
2016
, “
Finishing Technologies for Processing of Optical Microelectronic Items
,”
IOP Conference Series: Materials Science and Engineering
,
Moscow, Russia
,
Dec. 22–23
, p.
012043
.
4.
Suratwala
,
T.
,
Steele
,
R.
,
Feit
,
M.
,
Dylla-Spears
,
R.
,
Desjardin
,
R.
,
Mason
,
D.
,
Wong
,
L. L.
,
Geraghty
,
P.
,
Miller
,
P.
, and
Shen
,
N.
,
2014
, “
Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres
,”
J. Vis. Exp.
,
94
, pp.
1
10
.
5.
Sunanta
,
O.
,
2002
, “
Flat Surface Lapping: Process Modeling in an Intelligent Environment
,” Ph.D. thesis, University of Pittsburgh.
6.
Liao
,
D.
,
Zhao
,
H.
,
Yuan
,
Z.
, and
Xie
,
R.
,
2013
, “
Improvement of Surface Figure in the Polyurethane Pad Continuous Polishing Process
,”
Appl. Mech. Mater.
,
319
, pp.
107
112
.
7.
Xie
,
R.
,
Liao
,
D.
,
Chen
,
J.
,
Zhao
,
S.
,
Chen
,
X.
,
Ji
,
B.
,
Wang
,
J.
, and
Xu
,
Q.
,
2017
, “
In-Situ Shape Measurement Technology During Large Aperture Optical Planar Continuous Polishing Process
,”
Proceedings of the SPIE, Young Scientists Forum 2017
,
Shanghai, China
,
Nov. 24–26
, Vol.
10710
, p.
1071033
.
8.
Anderson
,
David
, and
Burge
,
Jim
,
2001
, “
Optical Fabrication
,”
Handbook of Optical Engineering
,
B.
Thompson
, ed.,
CRC Press
,
New York
.
9.
Rhorer
,
R.
, and
Evans
,
C.
,
1995
, “
Fabrication of Optics by Diamond Turning
,”
Handbook of Optics
,
M.
Bass
, ed.,
McGraw-Hill
,
New York
, pp.
41.1
41.13
.
10.
Wang
,
Z.
,
Yan
,
Y.
,
Zhou
,
P.
,
Si
,
L.
,
Kang
,
R.
, and
Guo
,
D.
,
2018
, “
A High-Efficient Precision Grinding for Fabricating Moderately Thick Plane Mirror (MTPM)
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2559
2566
.
11.
Lin
,
B.
,
Zhou
,
P.
,
Wang
,
Z. G.
,
Yan
,
Y.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2018
, “
Analytical Elastic-Plastic Cutting Model for Predicting Grain Depth-of-Cut in Ultrafine Grinding of Silicon Wafer
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121001
.
12.
Fan
,
B.
,
Zeng
,
Z.
,
Li
,
X.
,
Chen
,
Q.
,
Gao
,
P.
,
Zhou
,
J.
, and
Wan
,
Y.
,
2010
, “
Grinding and Polishing Technology by Computer Controlled Active Lap for Φ1250 mm F/1.5 Aspheric Mirror
,”
Proceedings of the SPIE—The International Society for Optical Engineering
,
Dalian, China
,
Apr. 26–29
, Vol.
7654
, p.
765409
.
13.
Shu
,
Y.
,
Kim
,
D. W.
,
Martin
,
H. M.
, and
Burge
,
J. H.
,
2013
, “
Correlation-Based Smoothing Model for Optical Polishing
,”
Opt. Express
,
21
(
23
), pp.
22515
22526
.
14.
Catrin
,
R.
,
Neauport
,
J.
,
Tarous
,
D.
,
Cormont
,
P.
,
Maunier
,
C.
, and
Lambert
,
S.
,
2014
, “
Magnetorheological Finishing for Removing Surface and Subsurface Defects of Fused Silica Optics
,”
Opt. Eng.
,
53
(
9
), p.
092010
.
15.
Degroote
,
J. E.
,
Marino
,
A. E.
,
Wilson
,
J. P.
,
Bishop
,
A. L.
,
Lambropoulos
,
J. C.
, and
Jacobs
,
S. D.
,
2007
, “
Removal Rate Model for Magnetorheological Finishing of Glass
,”
Appl. Opt.
,
46
(
32
), pp.
7927
7941
.
16.
Kiontke
,
S.
,
Demmler
,
M.
,
Zeuner
,
M.
,
Allenstein
,
F.
,
Dunger
,
T.
,
Nestler
,
M.
, and
Kiontke
,
S. R.
,
2010
, “
Ion-Beam Figuring (IBF) for High-Precision Optics Becomes Affordable
,”
Proceedings of the SPIE 7786, Current Developments in Lens Design and Optical Engineering XI; and Advances in Thin Film Coatings VI
,
San Diego, CA
,
Aug. 1–5
, p.
77860F
.
17.
Morikawa
,
K.
,
Kamijo
,
K.
,
Morijiri
,
K.
,
Pahlovy
,
S. A.
,
Aikawa
,
N.
, and
Miyamoto
,
I.
,
2012
, “
3–10 keV Xe+ Ion Beam Machining of Ultra Low Thermal Expansion Glasses for EUVL Projection Optics: Evaluation of Surface Roughness
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
272
, pp.
132
136
.
18.
DeGroote
,
J.
,
Jacobs
,
S.
,
Gregg
,
L.
,
Marino
,
A.
, and
Hayes
,
J.
,
2001
, “
Quantitative Characterization of Optical Polishing Pitch
,”
Optical Manufacturing and Testing IV
,
San Diego, CA
,
July 29–Aug. 3
, Vol.
4451
, pp.
209
221
.
19.
Suratwala
,
T. I.
,
Feit
,
M. D.
, and
Steele
,
W. A.
,
2010
, “
Toward Deterministic Material Removal and Surface Figure During Fused Silica Pad Polishing
,”
J. Am. Ceram. Soc.
,
93
(
5
), pp.
1326
1340
.
20.
Preston
,
F. W.
,
1922
, “
The Structure of Abraded Glass Surfaces
,”
Trans. Opt. Soc.
,
23
(
1
), pp.
141
146
.
21.
Del Hoyo
,
J.
,
Kim
,
D. W.
, and
Burge
,
J. H.
,
2013
, “
Super-Smooth Optical Fabrication Controlling High-Spatial Frequency Surface Irregularity
,”
Proceedings of the SPIE Optical Manufacturing and Testing X
,
San Diego, CA
,
Aug. 25–29
, Vol.
8838
, p.
88380T
.
22.
Kim
,
D. W.
,
Park
,
W. H.
,
An
,
H. K.
, and
Burge
,
J. H.
,
2010
, “
Parametric Smoothing Model for Visco-Elastic Polishing Tools
,”
Opt. Express
,
18
(
21
), pp.
22515
22526
.
23.
Li
,
Y.
,
Hou
,
J.
,
Xu
,
Q.
,
Wang
,
J.
,
Yang
,
W.
, and
Guo
,
Y.
,
2008
, “
The Characteristics of Optics Polished With a Polyurethane Pad
,”
Opt. Express
,
16
(
14
), pp.
10285
10293
.
24.
Cheng
,
H.
,
Dong
,
Z.
,
Ye
,
X.
, and
Tam
,
H.-Y.
,
2014
, “
Subsurface Damages of Fused Silica Developed During Deterministic Small Tool Polishing
,”
Opt. Express
,
22
(
15
), pp.
18588
18603
.
25.
Jian
,
W.
,
Yinbiao
,
G.
,
Yaguo
,
L.
,
Qiao
,
X.
, and
Wei
,
Y.
,
2009
, “
Research of Optical Flats in Pad Polishing
,”
Proceedings of the SPIE 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
,
Chengdu, China
,
May 20
, Vol.
7282
, p.
72820X
.
26.
Hu
,
I.
,
Yang
,
T. S.
, and
Chen
,
K. S.
,
2011
, “
Synergetic Effects of Wafer Rigidity and Retaining-Ring Parameters on Contact Stress Uniformity in Chemical Mechanical Planarization
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5–8
), pp.
523
538
.
27.
Wang
,
T.
,
Lu
,
X.
,
Zhao
,
D.
, and
He
,
Y.
,
2013
, “
Contact Stress Non-Uniformity of Wafer Surface for Multi-Zone Chemical Mechanical Polishing Process
,”
Sci. China Technol. Sci.
,
56
(
8
), pp.
1974
1979
.
28.
Wang
,
Y.
,
Yin
,
S.
, and
Huang
,
H.
,
2016
, “
Polishing Characteristics and Mechanism in Magnetorheological Planarization Using a Permanent Magnetic Yoke With Translational Movement
,”
Precis. Eng.
,
43
, pp.
93
104
.
29.
Wang
,
Y. Q.
,
Yin
,
S. H.
,
Huang
,
H.
,
Chen
,
F. J.
, and
Deng
,
G. J.
,
2015
, “
Magnetorheological Polishing Using a Permanent Magnetic Yoke With Straight Air Gap for Ultra-Smooth Surface Planarization
,”
Precis. Eng.
,
40
, pp.
309
317
.
30.
Naselaris
,
M.
,
2005
, “
Double-Sided Lapping and Polishing of Optical Materials; Technical Digest
,”
Proceedings of the SPIE 10315, Optifab 2005: Technical Digest
,
Rochester, NY
,
May 2–5
, Vol.
10315
, p.
1031512
.
31.
Suratwala
,
T.
,
Steele
,
W.
,
Feit
,
M.
,
Shen
,
N.
,
Dylla-Spears
,
R.
,
Wong
,
L. L.
,
Miller
,
P.
,
Desjardin
,
R.
, and
Elhadj
,
S.
,
2016
, “
Mechanism and Simulation of Removal Rate and Surface Roughness During Optical Polishing of Glasses
,”
J. Am. Ceram. Soc.
,
99
(
6
), pp.
1974
1984
.
32.
Zhang
,
F.
,
2014
, “
Serial Mode Combined Polishing of High-Quality Flat Mirror
,”
Chin. Opt. Lett.
,
12
(
s2
), pp.
1
3
.
33.
Rosales-Yeomans
,
D.
,
Doi
,
T.
,
Kinoshita
,
M.
,
Suzuki
,
T.
, and
Philipossiana
,
A.
,
2005
, “
Effect of Pad Groove Designs on the Frictional and Removal Rate Characteristics of ILD CMP
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
G62
G67
.
34.
Rosales-Yeomans
,
D.
,
DeNardis
,
D.
,
Borucki
,
L.
, and
Philipossiana
,
A.
,
2008
, “
Design and Evaluation of Pad Grooves for Copper CMP
,”
J. Electrochem. Soc.
,
155
(
10
), pp.
H797
H806
.
You do not currently have access to this content.