For the scalable production of commercial products based on vertically aligned carbon nanotubes (VACNTs), referred to as CNT forests, key manufacturing challenges must be overcome. In this work, we describe some of the main challenges currently facing CNT forest manufacturing, along with how we address these challenges with our custom-built rapid thermal processing chemical vapor deposition (CVD) reactor. First, the complexity of the multistep processes and reaction pathways involved in CNT growth by CVD limits the control on CNT population growth dynamics. Importantly, gas-phase decomposition of hydrocarbons, formation of catalyst nanoparticles, and catalytic growth of CNTs are typically coupled. Here, we demonstrated a decoupled recipe with independent control of each step. Second, significant run-to-run variations plague CNT growth by CVD. To improve growth consistency, we designed various measures to remove oxygen-containing molecules from the reactor, including air baking between runs, dynamic pumping down cycles, and low-pressure baking before growth. Third, real-time measurements during growth are needed for process monitoring. We implement in situ height kinetics via videography. The combination of approaches presented here has the potential to transform lab-scale CNT synthesis to robust manufacturing processes.

References

References
1.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
,
Hiura
,
H.
,
Bennett
,
J. W.
,
Ghaemi
,
H.
, and
Thio
,
T.
,
1996
, “
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature
,
382
(
6586
), pp.
54
56
.
2.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
3.
Yu
,
M.
,
Yu
,
M.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
2000
), pp.
637
640
.
4.
Soga
,
I.
,
Kondo
,
D.
,
Yamaguchi
,
Y.
,
Iwai
,
T.
,
Kikkawa
,
T.
, and
Joshin
,
K.
,
2009
, “
Thermal Management for Flip-Chip High Power Amplifiers Utilizing Carbon Nanotube Bumps
,”
2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)
,
Singapore
,
Dec. 9–11
, pp.
221
224
.
5.
Vanpaemel
,
J.
,
Sugiura
,
M.
,
Barbarin
,
Y.
,
De Gendt
,
S.
,
Tökei
,
Z.
,
Vereecken
,
P. M.
, and
van der Veen
,
M. H.
,
2014
, “
Growth and Integration Challenges for Carbon Nanotube Interconnects
,”
Microelectron. Eng.
,
120
, pp.
188
193
.
6.
Holt
,
J. K.
,
Park
,
H. G.
,
Wang
,
Y.
,
Stadermann
,
M.
,
Artyukhin
,
A. B.
,
Grigoropoulos
,
C. P.
,
Noy
,
A.
, and
Bakajin
,
O.
,
2006
, “
Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
,”
Science
,
312
(
5776
), pp.
1034
1037
.
7.
Liang
,
X.
,
Shin
,
J.
,
Magagnosc
,
D.
,
Jiang
,
Y.
,
Jin Park
,
S.
,
John Hart
,
A.
,
Turner
,
K.
,
Gianola
,
D. S.
, and
Purohit
,
P. K.
,
2017
, “
Compression and Recovery of Carbon Nanotube Forests Described as a Phase Transition
,”
Int. J. Solids Struct.
,
122–123
, pp.
196
209
.
8.
Fan
,
S.
,
Chapline
,
M. G.
,
Franklin
,
N. R.
,
Tombler
,
T. W.
,
Cassell
,
A. M.
, and
Dai
,
H.
,
1999
, “
Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties
,”
Science
,
283
(
5401
), pp.
512
514
.
9.
Cho
,
W.
,
Schulz
,
M.
, and
Shanov
,
V.
,
2014
, “
Growth and Characterization of Vertically Aligned Centimeter Long CNT Arrays
,”
Carbon
,
72
, pp.
264
273
.
10.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
,
2004
, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes
,”
Science
,
306
(
5700
), pp.
1362
1364
.
11.
Kim
,
S. M.
,
Cary
,
L. P.
,
Placidus
,
B. A.
,
Dmitri
,
N. Z.
,
Robert
,
H. H.
,
Maruyama
,
B.
, and
Stach
,
E. A.
,
2010
, “
Evolution in Catalyst Morphology Leads to Carbon Nanotube Growth Termination
,”
J. Phys. Chem. Lett.
,
1
(
6
), pp.
918
922
.
12.
Stadermann
,
M.
,
Sherlock
,
S. P.
,
In
,
J. B.
,
Fornasiero
,
F.
,
Park
,
H. G.
,
Artyukhin
,
A. B.
,
Wang
,
Y.
,
De Yoreo
,
J. J.
,
Grigoropoulos
,
C. P.
,
Bakajin
,
O.
,
Chernov
,
A. A.
, and
Noy
,
A.
,
2009
, “
Mechanism and Kinetics of Growth Termination in Controlled Chemical Vapor Deposition Growth of Multiwall Carbon Nanotube Arrays
,”
Nano Lett.
,
9
(
2
), pp.
738
744
.
13.
Polsen
,
E. S.
,
McNerny
,
D. Q.
,
Viswanath
,
B.
,
Pattinson
,
S. W.
, and
John Hart
,
A.
,
2015
, “
High-Speed Roll-to-Roll Manufacturing of Graphene Using a Concentric Tube CVD Reactor
,”
Sci. Rep.
,
5
(
1
), p.
10257
.
14.
Guzmán De Villoria
,
R.
,
Hart
,
A. J.
, and
Wardle
,
B. L.
,
2011
, “
Continuous High-Yield Production of Vertically Aligned Carbon Nanotubes on 2D and 3D Substrates
,”
ACS Nano
,
5
(
6
), pp.
4850
4857
.
15.
Lin
,
Z.
,
Gui
,
X.
,
Zeng
,
Z.
,
Liang
,
B.
,
Chen
,
W.
,
Liu
,
M.
,
Zhu
,
Y.
,
Cao
,
A.
, and
Tang
,
Z.
,
2015
, “
Biomimetic Carbon Nanotube Films With Gradient Structure and Locally Tunable Mechanical Property
,”
Adv. Funct. Mater.
,
25
(
46
), pp.
7173
7179
.
16.
Lee
,
C. J.
,
Son
,
K. H.
,
Park
,
J.
,
Yoo
,
J. E.
,
Huh
,
Y.
, and
Lee
,
J. Y.
,
2001
, “
Low Temperature Growth of Vertically Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition
,”
Chem. Phys. Lett.
,
338
(
2–3
), pp.
113
117
.
17.
Jeong
,
H. J.
,
Jeong
,
S. Y.
,
Shin
,
Y. M.
,
Han
,
J. H.
,
Lim
,
S. C.
,
Eum
,
S. J.
,
Yang
,
C. W.
,
Kim
,
N. G.
,
Park
,
C. Y.
, and
Lee
,
Y. H.
,
2002
, “
Dual-Catalyst Growth of Vertically Aligned Carbon Nanotubes at Low Temperature in Thermal Chemical Vapor Deposition
,”
Chem. Phys. Lett
,
361
(
3–4
), pp.
189
195
.
18.
Meshot
,
E. R.
,
Plata
,
L.
,
Tawfick
,
S.
,
Zhang
,
Y.
,
Verploegen
,
E. A.
, and
Hart
,
A. J.
,
2009
, “
Engineering Vertically Aligned Carbon Nanotube Growth by Decoupled Thermal Treatment of Precursor and Catalyst
,”
ACS Nano
,
3
(
9
), pp.
2477
2486
.
19.
Nessim
,
G. D.
,
Seita
,
M.
,
O’Brien
,
K. P.
,
Hart
,
A. J.
,
Bonaparte
,
R. K.
,
Mitchell
,
R. R.
, and
Thompson
,
C. V.
,
2009
, “
Low Temperature Synthesis of Vertically Aligned Carbon Nanotubes With Electrical Contact to Metallic Substrates Enabled by Thermal Decomposition of the Carbon Feedstock
,”
Nano Lett.
,
9
(
10
), pp.
3398
3405
.
20.
Youn
,
S. K.
,
Frouzakis
,
C. E.
,
Gopi
,
B. P.
,
Robertson
,
J.
,
Teo
,
K. B. K.
, and
Park
,
H. G.
,
2013
, “
Temperature Gradient Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
,”
Carbon
,
54
, pp.
343
352
.
21.
Yang
,
N.
,
Youn
,
S. K.
,
Frouzakis
,
C. E.
, and
Park
,
H. G.
,
2018
, “
An Effect of Gas-Phase Reactions on the Vertically Aligned CNT Growth by Temperature Gradient Chemical Vapor Deposition
,”
Carbon
,
130
, pp.
607
613
.
22.
Sakurai
,
S.
,
Inaguma
,
M.
,
Futaba
,
D. N.
,
Yumura
,
M.
, and
Hata
,
K.
,
2013
, “
Diameter and Density Control of Single-Walled Carbon Nanotube Forests by Modulating Ostwald Ripening Through Decoupling the Catalyst Formation and Growth Processes
,”
Small
,
9
(
21
), pp.
3584
3592
.
23.
Sakurai
,
S.
,
Inaguma
,
M.
,
Futaba
,
D. N.
,
Yumura
,
M.
, and
Hata
,
K.
,
2013
, “
A Fundamental Limitation of Small Diameter Single-Walled Carbon Nanotube Synthesis—A Scaling Rule of the Carbon Nanotube Yield With Catalyst Volume
,”
Materials
,
6
(
7
), pp.
2633
2641
.
24.
Li
,
J.
,
Bedewy
,
M.
,
White
,
A. O.
,
Polsen
,
E. S.
,
Tawfick
,
S.
, and
John Hart
,
A.
,
2016
, “
Highly Consistent Atmospheric Pressure Synthesis of Carbon Nanotube Forests by Mitigation of Moisture Transients
,”
J. Phys. Chem. C
,
120
(
20
), pp.
11277
11287
.
25.
Oliver
,
C. R.
,
Polsen
,
E. S.
,
Meshot
,
E. R.
,
Tawfick
,
S.
,
Park
,
S. J.
,
Bedewy
,
M.
, and
Hart
,
A. J.
,
2013
, “
Statistical Analysis of Variation in Laboratory Growth of Carbon Nanotube Forests and Recommendations for Improved Consistency
,”
ACS Nano
,
7
(
4
), pp.
3565
3580
.
26.
Bin
,
J.
,
Grigoropoulos
,
C. P.
,
Chernov
,
A. A.
, and
Noy
,
A.
,
2011
, “
Hidden Role of Trace Gas Impurities in Chemical Vapor Deposition Growth of Vertically-Aligned Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153102
.
27.
Bin
,
J.
,
Grigoropoulos
,
C. P.
,
Chernov
,
A. A.
, and
Noy
,
A.
,
2011
, “
Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays in Clean Oxygen-Free Conditions
,”
ACS Nano
,
5
(
12
), pp.
9602
9610
.
28.
Shi
,
W.
,
Li
,
J.
,
Polsen
,
E. S.
,
Oliver
,
C. R.
,
Zhao
,
Y.
,
Meshot
,
E. R.
,
Barclay
,
M.
,
Fairbrother
,
D. H.
,
Hart
,
A. J.
, and
Plata
,
D. L.
,
2017
, “
Oxygen-Promoted Catalyst Sintering Influences Number Density, Alignment, and Wall Number of Vertically Aligned Carbon Nanotubes
,”
Nanoscale
,
9
(
16
), pp.
5222
5233
.
29.
Bedewy
,
M.
,
Meshot
,
E. R.
,
Reinker
,
M. J.
, and
Hart
,
A. J.
,
2011
, “
Population Growth Dynamics of Carbon Nanotubes
,”
ACS Nano
,
5
(
11
), pp.
8974
8989
.
30.
Bedewy
,
M.
, and
Hart
,
A. J.
,
2013
, “
Mechanical Coupling Limits the Density and Quality of Self-Organized Carbon Nanotube Growth
,”
Nanoscale
,
5
(
7
), p.
2928
.
31.
Bedewy
,
M.
,
Viswanath
,
B.
,
Meshot
,
E. R.
,
Zakharov
,
D. N.
,
Stach
,
E. A.
, and
Hart
,
A. J.
,
2016
, “
Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy
,”
Chem Mater.
,
28
(
11
), pp.
3804
3813
.
32.
Balakrishnan
,
V.
,
Bedewy
,
M.
,
Meshot
,
E. R.
,
Pattinson
,
S. W.
,
Polsen
,
E. S.
,
Laye
,
F.
,
Zakharov
,
D. N.
,
Stach
,
E. A.
, and
Hart
,
A. J.
,
2016
, “
Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth
,”
ACS Nano
,
10
(
12
), pp.
11496
11504
.
33.
Bedewy
,
M.
,
Farmer
,
B.
, and
Hart
,
A. J.
,
2014
, “
Synergetic Chemical Coupling Controls the Uniformity of Carbon Nanotube Microstructure Growth
,”
ACS Nano
,
8
(
6
), pp.
5799
5812
.
34.
Bedewy
,
M.
,
Meshot
,
E. R.
,
Guo
,
H.
,
Verploegen
,
E. A.
,
Lu
,
W.
, and
Hart
,
A. J.
,
2009
, “
Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth
,”
J. Phys. Chem. C
,
113
(
48
), pp.
20576
20582
.
35.
Bedewy
,
M.
,
Meshot
,
E. R.
, and
Hart
,
A. J.
,
2012
, “
Diameter-Dependent Kinetics of Activation and Deactivation in Carbon Nanotube Population Growth
,”
Carbon
,
50
(
14
), pp.
5106
5116
.
36.
Zhong
,
G.
,
Iwasaki
,
T.
,
Robertson
,
J.
, and
Kawarada
,
H.
,
2007
, “
Growth Kinetics of 0.5 cm Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. B
,
111
(
8
), pp.
1907
1910
.
37.
Li
,
X.
,
Zhang
,
X.
,
Ci
,
L.
,
Shah
,
R.
,
Wolfe
,
C.
,
Kar
,
S.
,
Talapatra
,
S.
, and
Ajayan
,
P. M.
,
2008
, “
Air-Assisted Growth of Ultra-Long Carbon Nanotube Bundles
,”
Nanotechnology
,
19
(
45
), p.
455609
.
38.
Yasuda
,
S.
,
Futaba
,
D. D. N.
,
Yamada
,
T.
,
Satou
,
J.
,
Shibuya
,
A.
,
Takai
,
H.
,
Arakawa
,
K.
,
Yumura
,
M.
, and
Hata
,
K.
,
2009
, “
Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction
,”
ACS Nano
,
3
(
12
), pp.
4164
4170
.
39.
Zhang
,
Y.
,
Gregoire
,
J. M.
,
Van Dover
,
R. B.
, and
Hart
,
A. J.
,
2010
, “
Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
,
114
(
14
), pp.
6389
6395
.
40.
Kim
,
H.
,
Kang
,
J.
,
Kim
,
Y.
,
Hong
,
B. H.
,
Choi
,
J.
, and
Iijima
,
S.
,
2011
, “
Synthesis of Ultra-Long Super-Aligned Double-Walled Carbon Nanotube Forests
,”
J. Nanosci. Nanotechnol.
,
11
(
1
), pp.
470
473
.
41.
Lee
,
J.
,
Oh
,
E.
,
Kim
,
T.
,
Sa
,
J. H.
,
Lee
,
S. H.
,
Park
,
J.
,
Moon
,
D.
,
Kang
,
I. S.
,
Kim
,
M. J.
,
Kim
,
S. M.
, and
Lee
,
K. H.
,
2015
, “
The Influence of Boundary Layer on the Growth Kinetics of Carbon Nanotube Forests
,”
Carbon
,
93
, pp.
217
225
.
42.
Qi
,
J. L.
,
Wang
,
X.
,
Zheng
,
W. T.
,
Liu
,
J. W.
,
Tian
,
H. W.
,
Li
,
Z. P.
, and
Liu
,
C.
,
2008
, “
Influence of Oxygen on the Growth of Carbon Nanotubes
,”
J. Phys. D Appl. Phys.
41
(
20
), pp.
205306
.
43.
Puretzky
,
A. A.
,
Eres
,
G.
,
Rouleau
,
C. M.
,
Ivanov
,
I. N.
, and
Geohegan
,
D. B.
,
2008
, “
Real-Time Imaging of Vertically Aligned Carbon Nanotube Array Growth Kinetics
,”
Nanotechnology
,
19
(
5
), p.
055605
.
44.
Hart
,
A. J.
,
Van Laake
,
L.
, and
Slocum
,
A. H.
,
2007
, “
Desktop Growth of Carbon-Nanotube Monoliths With In Situ Optical Imaging
,”
Small
,
3
(
5
), pp.
772
777
.
You do not currently have access to this content.