Recent efforts in smart manufacturing (SM) have proven quite effective at elucidating system behavior using sensing systems, communications, and computational platforms, along with statistical methods to collect and analyze the real-time performance data. However, how do you effectively select where and when to implement these technology solutions within manufacturing operations? Furthermore, how do you account for the human-driven activities in manufacturing when inserting new technologies? Due to a reliance on human problem-solving skills, today’s maintenance operations are largely manual processes without wide-spread automation. The current state-of-the-art maintenance management systems and out-of-the-box solutions do not directly provide necessary synergy between human and technology, and many paradigms ultimately keep the human and digital knowledge systems separate. Decision makers are using one or the other on a case-by-case basis, causing both human and machine to cannibalize each other’s function, leaving both disadvantaged despite ultimately having common goals. A new paradigm can be achieved through a hybridized system approach—where human intelligence is effectively augmented with sensing technology and decision support tools, including analytics, diagnostics, or prognostic tools. While these tools promise more efficient, cost-effective maintenance decisions and improved system productivity, their use is hindered when it is unclear what core organizational or cultural problems they are being implemented to solve. To explicitly frame our discussion about implementation of new technologies in maintenance management around these problems, we adopt well-established error mitigation frameworks from human factors experts—who have promoted human–system integration for decades—to maintenance in manufacturing. Our resulting tiered mitigation strategy guides where and how to insert SM technologies into a human-dominated maintenance management process.

References

References
1.
IEC
,
2011
, “
AS IEC 60300.3.11 Dependability Management Application Guide—Reliability-Centred Maintenance
,” Geneva, Switzerland.
2.
Thomas
,
D. S.
,
2018
, “
The Costs and Benefits of Advanced Maintenance in Manufacturing
,” Technical Report, NIST AMS 100-18.
3.
Feldman
,
K.
,
Sandborn
,
P.
, and
Jazouli
,
T.
,
2008
, “
The Analysis of Return on Investment for PHM Applied to Electronic Systems
,”
2008 International Conference on Prognostics and Health Management
,
Denver CO
,
Oct. 6–9
, pp.
1
9
.
4.
Drummond
,
C.
, and
Yang
,
C.
,
2008
, “
Reverse Engineering Costs: How Much Will a Prognostic Algorithm Save
,”
International Conference on Prognostics and Health Management
,
Denver, CO
.
5.
Yang
,
C.
, and
Létourneau
,
S.
,
2007
, “
Model Evaluation for Prognostics: Estimating Cost Saving for the End Users
,”
Sixth International Conference on Machine Learning and Applications (ICMLA 2007)
,
Cincinnati, OH
,
Dec. 13–15
, pp.
304
309
.
6.
Nowlan
,
F. S.
, and
Heap
,
H. F.
,
1978
, “
Reliability-Centered Maintenance
,”
United Air Lines, Inc.
,
San Francisco, CA
,
Technical Report
, A066-579.
7.
IEC
,
2016
, “
AS IEC 60300.3.14 Dependability Management Application Guide—Maintenance and Maintenance Support
,” Geneva, Switzerland.
8.
Kelly
,
A.
,
2006
,
Strategic Maintenance Planning
,
Vol. 1
,
Elsevier
,
Oxford
.
9.
Kelly
,
A.
,
1997
,
Maintenance Organization and Systems
,
Butterworth-Heinemann
,
Oxford, UK
.
10.
Palmer
,
D.
,
1999
,
Maintenance Planning and Scheduling Handbook
,
McGraw-Hill Professional Publishing
,
New York
.
11.
GFMAM
,
2016
, “
Maintenance Framework
,” London, England.
12.
SMRP
,
2009
,
SMRP Best Practice-Maintenance & Reliability Body of Knowledge
,
5th ed.
,
Society of Maintenance and Reliability Professionals
,
Atlanta, GA
.
13.
Nakajima
,
S.
,
1988
, “
Introduction to TPM: Total Productive Maintenance (Preventative Maintenance Series)
.” Productivity Press, University of Minnesota.
14.
Blanchard
,
B. S.
,
1997
, “
An Enhanced Approach for Implementing Total Productive Maintenance in the Manufacturing Environment
,”
J. Qual. Maint. Eng.
,
3
(
2
), pp.
69
80
.
15.
McKone
,
K. E.
,
Schroeder
,
R. G.
, and
Cua
,
K. O.
,
2001
, “
The Impact of Total Productive Maintenance Practices on Manufacturing Performance
,”
J. Oper. Manage.
,
19
(
1
), pp.
39
58
.
16.
Smith
,
R.
, and
Hawkins
,
B.
,
2004
,
Lean Maintenance: Reduce Costs, Improve Quality, and Increase Market Share
,
Elsevier
,
New York
.
17.
Mostafa
,
S.
,
Dumrak
,
J.
, and
Soltan
,
H.
,
2015
, “
Lean Maintenance Roadmap
,”
Procedia Manuf.
,
2
, pp.
434
444
.
18.
Jin
,
X.
,
Siegel
,
D.
,
Weiss
,
B. A.
,
Gamel
,
E.
,
Wang
,
W.
,
Lee
,
J.
, and
Ni
,
J.
,
2016
, “
The Present Status and Future Growth of Maintenance in US Manufacturing: Results From a Pilot Survey
,”
Manuf. Rev.
,
3
, p.
10
.
19.
Alsyouf
,
I.
,
2007
, “
The Role of Maintenance in Improving Companies, Productivity and Profitability
,”
Int. J. Prod. Econ.
,
105
(
1
), pp.
70
78
.
20.
Mobley
,
R. K.
,
2002
,
An Introduction to Predictive Maintenance
,
Elsevier
,
New York
.
21.
Vogl
,
G. W.
,
Weiss
,
B. A.
, and
Helu
,
M.
,
2016
, “
A Review of Diagnostic and Prognostic Capabilities and Best Practices for Manufacturing
,”
J. Intell. Manuf.
,
30
(
1
), pp.
1
17
.
22.
Director, Mission Assurance, and Director of Human Performance, Training & Biosystems
,
2011
, “
FY 011 Department of Defense Human Systems Integration Management Plan
,”
Technical Rep.
Washington
,
DC: DDRE
.
23.
O’HARA
,
J. M.
, and
Brown
,
W.
,
2004
, “
Incorporation of Human Factors Engineering Analyses and Tools Into the Design Process for Digital Control Room Upgrades
,”
Technical Report, BNL-72801-2004-CP
,
Brrokhaven National Laboratory
,
US
.
24.
Reason
,
J.
,
1990
,
Human Error
,
Cambridge University Press
,
Cambridge, UK
.
25.
Rasmussen
,
J.
,
1983
,
Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Distinctions in Human Performance Models
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-13
(
3
), pp.
257
266
.
26.
Thomas
,
S. J.
,
2005
,
Improving Maintenance and Reliability Through Cultural Change
,
Industrial Press Inc
,
Norwalk, CT
.
27.
Kirwan
,
B.
,
Gibson
,
H.
,
Kennedy
,
R.
,
Edmunds
,
J.
,
Cooksley
,
G.
, and
Umbers
,
I.
,
2004
, “Nuclear Action Reliability Assessment (NARA): A Data-Based HRA Tool,”
Probabilistic Safety Assessment and Management
,
C.
Spitzer
,
U.
Schmocker
, and
V. N.
Dang
, eds.,
Springer
,
New York
, pp.
1206
1211
.
28.
Gertman
,
D.
,
Blackman
,
H.
,
Marble
,
J.
,
Byers
,
J.
, and
Smith
,
C.
, et al. 
,
2005
, “
The Spar-H Human Reliability Analysis Method
,” US Nuclear Regulatory Commission.
29.
Hollnagel
,
E.
,
1998
,
Cognitive Reliability and Error Analysis Method (CREAM)
,
Elsevier
,
New York
.
30.
Dekker
,
R.
,
1996
, “
Applications of Maintenance Optimization Models: A Review and Analysis
,”
Reliab. Eng. Syst. Saf.
,
51
(
3
), pp.
229
240
.
31.
Dekker
,
R.
, and
Scarf
,
P. A.
,
1998
, “
On the Impact of Optimisation Models in Maintenance Decision Making: The State of the Art
,”
Reliab. Eng. Syst. Saf.
,
60
(
2
), pp.
111
119
.
32.
Márquez
,
A. C.
,
2007
,
The Maintenance Management Framework: Models and Methods for Complex Systems Maintenance
,
Springer Science & Business Media
, New York.
33.
Jardine
,
A. K.
, and
Tsang
,
A. H.
,
2013
,
Maintenance, Replacement, and Reliability: Theory and Applications
,
CRC Press
,
Boca Raton, FL
.
34.
Alrabghi
,
A.
, and
Tiwari
,
A.
,
2015
, “
State of the Art in Simulation-Based Optimisation for Maintenance Systems
,”
Comput. Ind. Eng.
,
82
, pp.
167
182
.
35.
Ribeiro
,
M.
,
Silveira
,
J.
, and
Qassim
,
R.
,
2007
, “
Joint Optimisation of Maintenance and Buffer Size in a Manufacturing System
,”
Eur. J. Oper. Res.
,
176
(
1
), pp.
405
413
.
36.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
661
668
.
37.
Li
,
Y.
,
Tang
,
Q.
,
Chang
,
Q.
, and
Brundage
,
M. P.
,
2017
, “
An Event-Based Analysis of Condition-Based Maintenance Decision-Making in Multistage Production Systems
,”
Int. J. Prod. Res.
,
55
(
16
), pp.
4753
4764
.
38.
Hoffman
,
M.
,
Song
,
E.
,
Brundage
,
M.
, and
Kumara
,
S.
,
2018
, “
Condition-Based Maintenance Policy Optimization Using Genetic Algorithms and Gaussian Markov Improvement Algorithm
,”
PHM Society Conference
,
Philadelphia, PA
,
Sept. 24–27
, Vol.
10
.
39.
Kenné
,
J. P.
, and
Nkeungoue
,
L.
,
2008
, “
Simultaneous Control of Production, Preventive and Corrective Maintenance Rates of a Failure-prone Manufacturing System
,”
Appl. Numer. Math.
,
58
(
2
), pp.
180
194
.
40.
Song
,
D.-P.
,
2009
, “
Production and Preventive Maintenance Control in a Stochastic Manufacturing System
,”
Int. J. Prod. Econ.
,
119
(
1
), pp.
101
111
.
41.
de Castro
,
H. F.
, and
Cavalca
,
K. L.
,
2006
, “
Maintenance Resources Optimization Applied to a Manufacturing System
,”
Reliab. Eng. Syst. Saf.
,
91
(
4
), pp.
413
420
.
42.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
.
43.
Bajaj
,
M.
, and
Hedberg
,
T., Jr.
,
2018
, “
System Lifecycle Handler–Spinning a Digital Thread for Manufacturing
,”
INCOSE International Symposium
, Vol.
28
,
Wiley Online Library
, pp. 1636–1650.
44.
Rosen
,
R.
,
Von Wichert
,
G.
,
Lo
,
G.
, and
Bettenhausen
,
K. D.
,
2015
, “
About the Importance of Autonomy and Digital Twins for the Future of Manufacturing
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
567
572
.
45.
Monostori
,
L.
,
Váncza
,
J.
, and
Kumara
,
S. R.
,
2006
, “
Agent-Based Systems for Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
697
720
.
46.
Shen
,
W.
,
Hao
,
Q.
,
Yoon
,
H. J.
, and
Norrie
,
D. H.
,
2006
, “
Applications of Agent-Based Systems in Intelligent Manufacturing: An Updated Review
,”
Adv. Eng. Inform.
,
20
(
4
), pp.
415
431
.
47.
Hu
,
X.
,
Griffin
,
M.
,
Yeo
,
G.
,
Kanse
,
L.
,
Hodkiewicz
,
M.
, and
Parkes
,
K.
,
2018
, “
A New Look at Compliance With Work Procedures: An Engagement Perspective
,”
Saf. Sci.
,
105
, pp.
46
54
.
48.
Molina
,
R.
,
Unsworth
,
K.
,
Hodkiewicz
,
M.
, and
Adriasola
,
E.
,
2013
, “
Are Managerial Pressure, Technological Control and Intrinsic Motivation Effective in Improving Data Quality?
,”
Reliab. Eng. Syst. Saf.
,
119
, pp.
26
34
.
49.
Unsworth
,
K.
,
Adriasola
,
E.
,
Johnston-Billings
,
A.
,
Dmitrieva
,
A.
, and
Hodkiewicz
,
M.
,
2011
, “
Goal Hierarchy: Improving Asset Data Quality by Improving Motivation
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1474
1481
.
50.
Singh
,
S.
,
Kumar
,
R.
, and
Kumar
,
U.
,
2015
, “
Applying Human Factor Analysis Tools to a Railway Brake and Wheel Maintenance Facility
,”
J. Qual. Maint. Eng.
,
21
(
1
), pp.
89
99
.
51.
Reason
,
J.
, and
Hobbs
,
A.
,
2017
,
Managing Maintenance Error: A Practical Guide
,
CRC Press
,
Boca Raton, FL
.
52.
Kanse
,
L.
,
Parkes
,
K.
,
Hodkiewicz
,
M.
,
Hu
,
X.
, and
Griffin
,
M.
,
2018
, “
Are You Sure You Want Me to Follow This? A Study of Procedure Management, User Perceptions and Compliance Behaviour
,”
Saf. Sci.
,
101
, pp.
19
32
.
53.
Morkos
,
B.
,
Taiber
,
J.
,
Summers
,
J.
,
Mears
,
L.
,
Fadel
,
G.
, and
Rilka
,
T.
,
2012
, “
Mobile Devices Within Manufacturing Environments: A Bmw Applicability Study
,”
Int. J. Interact. Des. Manuf.
,
6
(
2
), pp.
101
111
.
54.
Smoker
,
T. M.
,
French
,
T.
,
Liu
,
W.
, and
Hodkiewicz
,
M. R.
,
2017
, “
Applying Cognitive Computing to Maintainer-Collected Data
,”
System Reliability and Safety (ICSRS), 2017 2nd International Conference on System Reliability and Safety (ICSRS)
,
Milan, Italy
,
December
, pp.
543
551
.
55.
Sexton
,
T.
,
Brundage
,
M. P.
,
Morris
,
K.
, and
Hoffman
,
M.
,
2017
, “
Hybrid Datafication of Maintenance Logs From Ai-Assisted Human Tags
,”
IEEE Big Data, 2017
,
Boston, MA
,
December
, pp.
1
8
.
56.
Brundage
,
M. P.
,
Sexton
,
T.
,
Moccozet
,
S.
,
Hoffman
,
M.
, and
Morris
,
K.
,
2018
, “
Developing Maintenance Key Performance Indicators From Maintenance Work Order Data
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
, Paper No. MSEC2018-6492.
57.
Sexton
,
T.
,
Hodkiewicz
,
M.
,
Brundage
,
M. P.
, and
Smoker
,
T.
,
2018
, “
Benchmarking for Keyword Extraction Methodologies in Maintenance Work Orders
,”
PHM Society Conference
,
Milan, Italy
,
Feb.
, Vol.
10
, pp. 543–551.
58.
Ebrahimipour
,
V.
, and
Yacout
,
S.
,
2015
, “
Ontology-Based Schema to Support Maintenance Knowledge Representation With a Case Study of a Pneumatic Valve
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
45
(
4
), pp.
702
712
.
59.
Mazzola
,
L.
,
Kapahnke
,
P.
,
Vujic
,
M.
, and
Klusch
,
M.
,
2016
, “
Cdm-Core: A Manufacturing Domain Ontology in Owl2 for Production and Maintenance
,”
Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2016, SCITEPRESS—Science and Technology Publications, LDA
,
College Station, TX
,
June
, pp.
136
143
.
60.
Wallace
,
E.
,
Kiritsis
,
D.
,
Smith
,
B.
, and
Will
,
C.
,
2018
, “
The Industrial Ontologies Foundry Proof-of-Concept Project
,”
IFIP International Conference on Advances in Production Management Systems
,
Philadelphia, PA
,
September
Springer
,
New York
, pp.
402
409
.
61.
Roberts
,
K. H.
,
1990
, “
Managing High Reliability Organizations
,”
Calif. Manage. Rev.
,
32
(
4
), pp.
101
113
.
62.
Kawamoto
,
K.
,
Houlihan
,
C. A.
,
Balas
,
E. A.
, and
Lobach
,
D. F.
,
2005
, “
Improving Clinical Practice Using Clinical Decision Support Systems: A Systematic Review of Trials to Identify Features Critical to Success
,”
BMJ
,
330
(
7494
), pp.
765
.
63.
ISO
,
2006
. “
ISO 60712 Analysis Techniques for System Reliability—Procedure for Failure Mode and Effects Analysis
,” Geneva, Switzerland.
64.
Rausand
,
M.
, and
Vatn
,
J.
,
2008
, “Reliability Centred Maintenance,”
Complex System Maintenance Handbook
,
K. H. A.
Kobbacy
and
D. N. P.
Murthy
, eds.,
Springer
,
New York
, pp.
79
108
.
65.
Moubray
,
J.
,
2007
,
Reliability-Centered Maintenance RCM II
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford
.
66.
SAE
,
2011
, “
SAE JA1012 A Guide to the Reliability-Centered Maintenance (RCM) Standard
,” London. Vol. 330, Number 7494.
67.
Bertling
,
L.
,
2002
, “
Reliability-Centred Maintenance for Electric Power Distribution Systems
,” Ph.D. thesis,
Elektrotekniska System
.
68.
Schlabbach
,
R.
, and
Berka
,
T.
,
2001
, “
Reliability-Centred Maintenance of MV Circuit-Breakers
,”
2001 IEEE Porto Power Tech Proceedings
, Vol.
4
,
IEEE
, pp.
5
–pp.
69.
Mokashi
,
A.
,
Wang
,
J.
, and
Vermar
,
A.
,
2002
, “
A Study of Reliability-Centred Maintenance in Maritime Operations
,”
Mar. Policy
,
26
(
5
), pp.
325
335
.
70.
Igba
,
J.
,
Alemzadeh
,
K.
,
Anyanwu-Ebo
,
I.
,
Gibbons
,
P.
, and
Friis
,
J.
,
2013
, “
A Systems Approach Towards Reliability-Centred Maintenance (REM) of Wind Turbines
,”
Procedia Comput. Sci.
,
16
, pp.
814
823
.
71.
Tu
,
P. Y.
,
Yam
,
R.
,
Tse
,
P.
, and
Sun
,
A.
,
2001
, “
An Integrated Maintenance Management System for an Advanced Manufacturing Company
,”
Int. J. Adv. Manuf. Technol.
,
17
(
9
), pp.
692
703
.
72.
Jonsson
,
P.
,
1997
, “
The Status of Maintenance Management in Swedish Manufacturing Firms
,”
J. Qual. Maint. Eng.
,
3
(
4
), pp.
233
258
.
73.
Astfalck
,
L.
,
Hodkiewicz
,
M.
,
Keating
,
A.
,
Cripps
,
E.
, and
Pecht
,
M.
,
2016
, “
A Modelling Ecosystem for Prognostics
,”
Proceedings of the 2016 Annual Conference of the Prognostics and Health Management Society, PHM Society
,
Devcer, CO
,
September
.
74.
Sikorska
,
J.
,
Hodkiewicz
,
M.
, and
Ma
,
L.
,
2011
, “
Prognostic Modelling Options for Remaining Useful Life Estimation by Industry
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1803
1836
.
75.
Sankararaman
,
S.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2014
, “
Are Current Prognostic Performance Evaluation Practices Sufficient and Meaningful?
,”
Proceedings of the 2014 Annual Conference of the Prognostics and Health Management Society, PHM Society
,
Fort Worth, TX
,
October
.
76.
Kwon
,
D.
,
Hodkiewicz
,
M. R.
,
Fan
,
J.
,
Shibutani
,
T.
, and
Pecht
,
M. G.
,
2016
, “
Iot-Based Prognostics and Systems Health Management for Industrial Applications
,”
IEEE Access
,
4
, pp.
3659
3670
.
77.
Lee
,
J.
,
Ni
,
J.
,
Djurdjanovic
,
D.
,
Qiu
,
H.
, and
Liao
,
H.
,
2006
, “
Intelligent Prognostics Tools and E-maintenance
,”
Comput. Ind.
,
57
(
6
), pp.
476
489
.
78.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
79.
Klyne
,
G.
, and
Newman
,
C.
,
2002
, “
Date and Time on the Internet: Timestamps
,” Technical Report, Vol. 5, Paper No. 082
80.
Jo
,
J.
,
Huh
,
J.
,
Park
,
J.
,
Kim
,
B.
, and
Seo
,
J.
,
2014
, “
Livegantt: Interactively Visualizing a Large Manufacturing Schedule
,”
IEEE Trans. Vis. Comput. Graph.
,
20
(
12
), pp.
2329
2338
.
81.
Xu
,
P.
,
Mei
,
H.
,
Ren
,
L.
, and
Chen
,
W.
,
2017
, “
Vidx: Visual Diagnostics of Assembly Line Performance in Smart Factories
,”
IEEE Trans. Vis. Comput. Graph.
,
23
(
1
), pp.
291
300
.
82.
Phillips
,
J.
,
Cripps
,
E.
,
Lau
,
J. W.
, and
Hodkiewicz
,
M.
,
2015
, “
Classifying Machinery Condition Using Oil Samples and Binary Logistic Regression
,”
Mech. Syst. Signal Process.
,
60
, pp.
316
325
.
83.
Bliss
,
J. P.
, and
Dunn
,
M. C.
,
2000
, “
Behavioural Implications of Alarm Mistrust as a Function of Task Workload
,”
Ergonomics
,
43
(
9
), pp.
1283
1300
.
84.
Chor
,
K. H. B.
,
Wisdom
,
J. P.
,
Olin
,
S.-C. S.
,
Hoagwood
,
K. E.
, and
Horwitz
,
S. M.
,
2015
, “
Measures for Predictors of Innovation Adoption
,”
Adm. Policy Mental Health Mental Health Serv. Res.
,
42
(
5
), pp.
545
573
.
85.
Sikorska
,
J.
,
Hodkiewicz
,
M.
,
De Cruz
,
A.
,
Astfalck
,
L.
, and
Keating
,
A.
,
2016
, “
A Collaborative Data Library for Testing Prognostic Models
,”
Third European Conference of the Prognostics and Health Management Society
,
Bilbao, Spain
,
July
.
86.
Hallbert
,
B.
,
Boring
,
R.
,
Gertman
,
D.
,
Dudenhoeffer
,
D.
,
Whaley
,
A.
,
Marble
,
J.
,
Joe
,
J.
, and
Lois
,
E.
,
2006
, “
Human Event Repository and Analysis (HERA) System, Overview
,”
US Nuclear Regulatory Commission
,
Washington DC
,
Technical Report
, NUREG/CR-6903.
87.
Skagestad
,
P.
,
1993
, “
Thinking With Machines: Intelligence Augmentation, Evolutionary Epistemology, and Semiotic
,”
J. Soc. Evol. Syst.
,
16
(
2
), pp.
157
180
.
88.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
J.
,
2017
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051102
.
89.
Duvenaud
,
D.
,
2014
, “
Automatic Model Construction With Gaussian Processes
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
90.
Sexton
,
T.
, and
Ren
,
M. Y.
,
2017
, “
Learning an Optimization Algorithm Through Human Design Iterations
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101404
.
91.
Gonzalez
,
J.
,
Dai
,
Z.
,
Damianou
,
A.
, and
Lawrence
,
N. D.
,
2016
, “
Bayesian Optimisation With Pairwise Preferential Returns
,”
NIPS Workshop on Bayesian Optimization
,
Long Beach, CA
,
December
.
92.
Bloom’s
,
T. M. E.
,
1965
,
Bloom’s Taxonomy of Educational Objectives
,
Longman
,
New York
.
You do not currently have access to this content.