Laser micromachining has several advantages such as the capability of flexibly producing very small features in both conductive and nonconductive materials. However, it may often suffer from induced defects, such as debris deposition on workpieces. To improve laser micromachining, a novel machining process, called “ultrasound-assisted water-confined laser micromachining” (UWLM), was proposed by the corresponding author. The ultrasound during UWLM can be applied through different approaches, such as an ultrasonic horn or a high-intensity focused ultrasound (HIFU) transducer, which can be called horn- and HIFU-based UWLM, respectively. This is the first paper (to the authors’ best knowledge) reporting experimental studies on microhole drilling using the novel HIFU-based UWLM process. In this study, drilled workpieces have been characterized; and in situ time-resolved shadowgraph imaging and pressure measurement during the UWLM process have been performed. Under the investigated conditions, it has been found that the microholes drilled by HIFU-based UWLM under suitable conditions appear reasonably clean without significant debris depositions often seen for a nanosecond (ns) laser ablation in air. The UWLM process can produce much larger average ablation depths per pulse than laser ablation in water without ultrasound (e.g., for copper, the former depth can be up to more than six times the latter). The study has revealed one important mechanism for the enhanced ablation depth, which is introduced in more details in the paper.

References

References
1.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micromachining
,”
Ann. CIRP
,
49
(
2
), pp.
473
488
.
2.
Piljek
,
P.
,
Keran
,
Z.
, and
Math
,
M.
,
2014
, “
Micromachining—Review of Literature From 1980 to 2010
,”
Interdiscip. Descr. Complex Syst.
,
12
(
1
), pp.
1
27
.
3.
Dahotre
,
N. B.
, and
Harimkar
,
S.
,
2008
,
Laser Fabrication and Machining of Materials
,
Springer Science + Business Media
,
New York
.
4.
Gower
,
M. C.
,
2000
, “
Industrial Applications of Laser Micromachining
,”
Opt. Express
,
7
(
2
), pp.
56
67
.
5.
Kancharla
,
V.
, and
Chen
,
S.
,
2002
, “
Fabrication of Biodegradable Polymeric Micro-Devices Using Laser Micromachining
,”
Biomed. Microdevices
,
4
(
2
), pp.
105
109
.
6.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.
7.
Li
,
J.
,
Herman
,
P. R.
,
Wei
,
X. M.
,
Chen
,
K. P.
,
Ihlemann
,
J.
,
Marowsky
,
G.
,
Oesterlin
,
P.
, and
Burghardt
,
B.
,
2002
, “
High-Resolution F2-Laser Machining of Micro-Optic Components
,”
Proc. SPIE
,
4637
, pp.
228
234
.
8.
Bian
,
Q.
,
Yu
,
X.
,
Zhao
,
B.
,
Chang
,
Z.
, and
Lei
,
S.
,
2013
, “
Femtosecond Laser Ablation of Indium Tin-Oxide Narrow Grooves for Thin Film Solar Cells
,”
Opt. Laser Technol.
,
45
(
1
), pp.
395
401
.
9.
Matsumura
,
T.
,
Kazama
,
A.
, and
Yagi
,
T.
,
2005
, “
Generation of Debris in the Femtosecond Laser Machining of a Silicon Substrate
,”
Appl. Phys. A
,
81
(
7
), pp.
1393
1398
.
10.
Campbell
,
B. R.
,
Palmer
,
J. A.
, and
Semak
,
V. V.
,
2007
, “
Peculiarity of Metal Drilling With a Commercial Femtosecond Laser
,”
Appl. Surf. Sci.
,
253
(
15
), pp.
6334
6338
.
11.
Muhammad
,
N.
, and
Li
,
L.
,
2012
, “
Underwater Femtosecond Laser Micromachining of Thin Nitinol Tubes for Medical Coronary Stent Manufacture
,”
Appl. Phys. A
,
107
(
4
), pp.
849
861
.
12.
Behera
,
R. R.
,
Sankar
,
M. R.
,
Swaminathan
,
J.
,
Kumar
,
I.
,
Sharma
,
A. K.
, and
Khare
,
A.
,
2016
, “
Experimental Investigation of Underwater Laser Beam Micromachining (UW-LBμM) on 304 Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
1969
1982
.
13.
Kruusing
,
A.
,
2004
, “
Underwater and Water-Assisted Laser Processing: Part 2—Etching, Cutting and Rarely Used Methods
,”
Opti. Lasers Eng.
,
41
(
2
), pp.
329
352
.
14.
Zhu
,
S.
,
Hong
,
M. H.
,
Koh
,
M. L.
, and
Lu
,
Y. F.
,
2002
, “
Laser Ablation of Si in Water and Ambient Air
,”
Proc. SPIE
,
4426
, pp.
39
42
.
15.
Wu
,
B.
(inventor), Ultrasound-Assisted Water-Confined Laser Micromachining, U.S. Patent No. US9649722B2, date of patent: 05/16/2017, priority date: 03/15/2013, current assignee,
Illinois Institute of Technology
,
Chicago, IL
.
16.
Liu
,
Z.
,
Gao
,
Y.
,
Wu
,
B.
,
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Ultrasound-Assisted Water-Confined Laser Micromachining: A Novel Machining Process
,”
Manuf. Lett.
,
2
(
4
), pp.
87
90
.
17.
Liu
,
Z.
,
Wu
,
B.
,
Samanta
,
A.
,
Shen
,
N.
,
Ding
,
H.
,
Xu
,
R.
, and
Zhao
,
K.
,
2017
, “
Ultrasound-Assisted Water-Confined Laser Micromachining (UWLM) of Metals: Experimental Study and Time-Resolved Observation
,”
J. Mater. Process. Technol.
,
245
, pp.
259
269
.
18.
Charee
,
W.
,
Tangwarodomnukun
,
V.
, and
Dumkum
,
C.
,
2016
, “
Ultrasonic-Assisted Underwater Laser Micromachining of Silicon
,”
J. Mater. Process. Technol.
,
231
, pp.
209
220
.
19.
Vladoiu
,
I.
,
Stafe
,
M.
,
Negutu
,
C.
, and
Popescu
,
I. M.
,
2008
, “
The Dependence of the Ablation Rate of Metals on Nanosecond Laser Fluence and Wavelength
,”
J. Optoelectron. Adv. Mater.
,
10
(
12
), pp.
3177
3181
.
20.
Cheeke
,
J. D. N.
,
2002
,
Fundamentals and Applications of Ultrasonic Waves
,
CRC Press LLC
,
Boca Raton, FL
.
21.
Liu
,
J.
,
Tian
,
C.
,
Wang
,
Z.
, and
Lin
,
J.
,
2007
, “
Measurement of Channel Depth by Using a General Microscope Based on Depth of Focus
,”
Eurasian J. Anal. Chem.
,
2
(
1
), pp.
12
20
.
22.
Gao
,
Y.
,
Zhou
,
Y.
,
Wu
,
B.
,
Tao
,
S.
,
Jacobsen
,
R. L.
, and
Goodman
,
B.
,
2011
, “
Time-Resolved Experimental Study of Silicon Carbide Ablation by Infrared Nanosecond Laser Pulses
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021006
.
23.
Hendow
,
S. T.
,
Romero
,
R.
,
Shakir
,
S. A.
, and
Guerreiro
,
P. T.
,
2011
, “
Percussion Drilling of Metals Using Bursts of Nanosecond Pulses
,”
Opt. Express
,
19
(
11
), pp.
10221
10231
.
24.
Shaheen
,
M. E.
,
Gagnon
,
J. E.
, and
Fryer
,
B. J.
,
2013
, “
Laser Ablation of Iron: A Comparison Between Femtosecond and Picosecond Laser Pulses
,”
J. Appl. Phys.
,
114
(
8
), p.
083110
.
25.
Lazic
,
V.
,
Jovicevic
,
S.
, and
Carpanese
,
M.
,
2012
, “
Laser Induced Bubbles Inside Liquids: Transient Optical Properties and Effects on a Beam Propagation
,”
Appl. Phys. Lett.
,
101
(
5
), p.
054101
.
26.
Chen
,
H.
,
Li
,
X.
, and
Wan
,
M.
,
2006
, “
The Inception of Cavitation Bubble Clouds Induced by High-Intensity Focused Ultrasound
,”
Ultrason
,
44
(
Suppl. 1
), pp.
e427
e429
.
27.
Gale
,
G. W.
, and
Busnaina
,
A. A.
,
1999
, “
Roles of Cavitation and Acoustic Streaming in Megasonic Cleaning
,”
Particul. Sci. Technol.
,
17
(
3
), pp.
229
238
.
You do not currently have access to this content.