Studies have indicated that reducing the process energy demand is as important as improving the energy conversion efficiency to make manufacturing equipment more energy efficient. However, little work has been done to understand the energy demand characteristics of the widely employed drawing process. In this paper, the energy demand of the cylindrical drawing process under a range of operating parameters was measured and analyzed. Since any energy saving efforts should not have negative effects on the product quality, the forming quality of the drawn part indicated by the maximum thinning and thickening ratios and variation of thickness was also considered. To identify the main contributors to energy demand and forming quality, two sets of experiments were designed based on the Taguchi method. The first set of experiments include three parameters (i.e., punch velocity, blank holder force, and drawn depth) at three levels, while the second set of experiments only include two factors (i.e., punch velocity and blank holder force) at three levels due to their impacts on the forming quality. Analysis of variance (ANOVA) and analysis of means (ANOM) were then used to analyze the experimental results. Finally, grey relational analysis (GRA) was used to reveal the correlation between the forming quality and the process energy. Results show that the mean thickness variation has the strongest relational grading with the process energy, which suggests that the process energy can be used as an effective indicator to predict mean thickness variation of the drawn part. The identified characteristics of the process energy and the forming quality can be used to select process parameters for reduced energy demands of drawing processes.

References

References
1.
Cai
,
W.
,
Lai
,
K.-h.
,
Liu
,
C.
,
Wei
,
F.
,
Ma
,
M.
,
Jia
,
S.
,
Jiang
,
Z.
, and
Lv
,
L.
,
2019
, “
Promoting Sustainability of Manufacturing Industry Through the Lean Energy-Saving and Emission-Reduction Strategy
,”
Sci. Total Environ.
,
665
, pp.
23
32
.
2.
Xiao
,
Q.
,
Li
,
C.
,
Tang
,
Y.
,
Li
,
L.
, and
Li
,
L.
,
2019
, “
A Knowledge-Driven Method of Adaptively Optimizing Process Parameters for Energy Efficient Turning
,”
Energy
,
166
(
C
), pp.
142
156
.
3.
Dwivedi
,
R.
, and
Agnihotri
,
G.
,
2017
, “
Study of Deep Drawing Process Parameters
,”
Mater. Today Proc.
,
4
(
2, Part A
), pp.
820
826
.
4.
Autoform
,
2019
, “
Deep Drawing 2017
,” https://www.autoform.com/en/glossary/deep-drawing/. Accessed Apr. 15, 2019.
5.
Statista
,
2019
, “
Worldwide Automobile Production From 2000 to 2017
,” https://www.statista.com/statistics/262747/worldwide-automobile-production-since-2000/. Accessed Apr. 15, 2019.
6.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Triebe
,
M. J.
, and
Liu
,
Z.
,
2017
, “
Analysis of a Novel Energy-Efficient System With Double-Actuator for Hydraulic Press
,”
Mechatronics
,
47
, pp.
77
87
.
7.
Zheng
,
H.
, and
Sun
,
Y.
,
2014
, “
Research on Pump-Controlled Servo Hydraulic Press and Its Energy Consumption Experiments
,”
Adv. Mater. Res.
,
988
, pp.
590
596
.
8.
Bosga
,
S.
,
2009
, “
A Peak-Power Limitation Method for Multi-Drive Systems
,”
13th European Conference on Power Electronics and Applications
,
Barcelona, Spain
,
Sept. 8–10
, pp.
1
8
.
9.
Osakada
,
K.
,
Mori
,
K.
,
Altan
,
T.
, and
Groche
,
P.
,
2011
, “
Mechanical Servo Press Technology for Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
651
672
.
10.
Yao
,
J.
,
Li
,
B.
,
Kong
,
X.
, and
Zhou
,
F.
,
2016
, “
Displacement and Dual-Pressure Compound Control for Fast Forging Hydraulic System
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
353
363
.
11.
Zhang
,
Q.
,
Fang
,
J.
,
Wei
,
J.
,
Xiong
,
Y.
, and
Wang
,
G.
,
2016
, “
Adaptive Robust Motion Control of a Fast Forging Hydraulic Press Considering the Nonlinear Uncertain Accumulator Model
,”
Proc. Inst. Mech. Eng.
,
230
(
6
), pp.
483
497
.
12.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Sutherland
,
J. W.
, and
Liu
,
Z.
,
2017
, “
An Energy-Saving Method by Balancing the Load of Operations for Hydraulic Press
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2673
2683
.
13.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
, and
Liu
,
Z.
,
2017
, “
Operation Scheduling of Multi-Hydraulic Press System for Energy Consumption Reduction
,”
J. Cleaner Prod.
,
165
, pp.
1407
1419
.
14.
Schenke
,
C.
, and
Weber
,
J.
,
2019
, “
Energy Efficiency of Displacement Control Drive Systems in Hydraulic Forming Presses
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041013
.
15.
Sorrell
,
S.
,
2015
, “
Reducing Energy Demand: A Review of Issues, Challenges and Approaches
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
74
82
.
16.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
The Energy Requirements and Environmental Impacts of Sheet Metal Forming: An Analysis of Five Forming Processes
,”
J. Mater. Process. Technol.
,
244
, pp.
116
135
.
17.
Zhao
,
K.
,
Liu
,
Z.
,
Yu
,
S.
,
Li
,
X.
,
Huang
,
H.
, and
Li
,
B.
,
2015
, “
Analytical Energy Dissipation in Large and Medium-Sized Hydraulic Press
,”
J. Cleaner Prod.
,
103
, pp.
908
915
.
18.
Ma
,
W.-y.
,
Wang
,
B.-y.
,
Fu
,
l.
,
Zhou
,
J.
, and
Huang
,
M.-d.
,
2015
, “
Influence of Process Parameters on Deep Drawing of AA6111 Aluminum Alloy at Elevated Temperatures
,”
J. Central South Univ.
,
22
(
4
), pp.
1167
1174
.
19.
Padmanabhan
,
R.
,
Oliveira
,
M. C.
,
Alves
,
J. L.
, and
Menezes
,
L. F.
,
2007
, “
Influence of Process Parameters on the Deep Drawing of Stainless Steel
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1062
1067
.
20.
Sener
,
B.
, and
Kurtaran
,
H.
,
2016
, “
Optimization of Process Parameters for Rectangular Cup Deep Drawing by the Taguchi Method and Genetic Algorithm
,”
Mater. Test.
,
58
(
3
), pp.
238
245
.
21.
Yoshihara
,
S.
,
Manabe
,
K.-i.
, and
Nishimura
,
H.
,
2005
, “
Effect of Blank Holder Force Control in Deep-Drawing Process of Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
170
(
3
), pp.
579
585
.
22.
Agrawal
,
A.
,
Reddy
,
N. V.
, and
Dixit
,
P. M.
,
2007
, “
Determination of Optimum Process Parameters for Wrinkle Free Products in Deep Drawing Process
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
51
54
.
23.
Kitayama
,
S.
, and
Yamada
,
S.
,
2017
, “
Simultaneous Optimization of Blank Shape and Variable Blank Holder Force of Front Side Member Manufacturing by Deep Drawing
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1
), pp.
1381
1390
.
24.
Laurent
,
H.
,
Coër
,
J.
,
Manach
,
P. Y.
,
Oliveira
,
M. C.
, and
Menezes
,
L. F.
,
2015
, “
Experimental and Numerical Studies on the Warm Deep Drawing of an Al–Mg Alloy
,”
Int. J. Mech. Sci.
,
93
(
Supplement C
), pp.
59
72
.
25.
Hosseini
,
S. H.
, and
Sedighi
,
M.
,
2018
, “
Novel Friction-Assisted Tube Forming Methods: A Comparison of Microstructure and Mechanical Properties
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101008
.
26.
Jiang
,
T.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Investigation of Deformation Behavior of SS304 and Pure Copper Subjected to Electrically Assisted Forming Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011004
.
27.
Yuenyong
,
J.
,
Suthon
,
M.
,
Kingklang
,
S.
,
Thanakijkasem
,
P.
,
Mahabunphachai
,
S.
, and
Uthaisangsuk
,
V.
,
2017
, “
Formability Prediction for Tube Hydroforming of Stainless Steel 304 Using Damage Mechanics Model
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011006
.
28.
Wagner
,
S. W.
,
Ng
,
K.
,
Emblom
,
W. J.
, and
Camelio
,
J. A.
,
2016
, “
Influence of Continuous Direct Current on the Microtube Hydroforming Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
034502
.
29.
Yazdi
,
M. S.
,
Bakhshi-Jooybari
,
M.
,
Gorji
,
H.
,
Shakeri
,
M.
, and
Khademi
,
M.
,
2017
, “
Investigation of Forming Cylindrical Parts in a Modified Hydrodynamic Deep Drawing Assisted by Radial Pressure With Inward Flowing Liquid
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031007
.
30.
Singh
,
C. P.
, and
Agnihotri
,
G.
,
2015
, “
Study of Deep Drawing Process Parameters: A Review
,”
Int. J. Sci. Res. Publ.
,
5
(
2
), pp.
1
15
.
31.
Altinbalik
,
T.
, and
Tonka
,
A.
,
2012
, “
Numerical and Experimental Study of Sheet Thickness Variation in Deep Drawing Processes
,”
Int. J. Modern Manuf. Technol.
,
4
(
2
), pp.
9
16
.
32.
Assempour
,
A.
, and
Gandomkar
,
M.
,
2005
, “
An Energy Method for Analysing Deep Drawing Process by Simulated Annealing Optimization Algorithm
,”
JSME Int. J. Series C Mech. Syst. Mach. Elem. Manuf.
,
48
(
1
), pp.
95
102
.
33.
Han
,
X.
,
Jiang
,
C.
,
Li
,
G.
,
Zhong
,
Z.
, and
Hu
,
D.
,
2006
, “
An Inversion Procedure for Determination of Variable Binder Force in U-Shaped Forming
,”
Inverse Probl. Sci. Eng.
,
14
(
3
), pp.
301
312
.
34.
Zein
,
H.
,
El-Sherbiny
,
M.
,
Abd-Rabou
,
M.
, and
El Shazly
,
M.
,
2013
, “
Effect of Die Design Parameters on Thinning of Sheet Metal in the Deep Drawing Process
,”
Am. J. Mech. Eng.
,
1
(
2
), pp.
20
29
.
35.
Tian
,
L.
,
Men
,
C.
, and
Yu
,
Q.
,
2015
, “
Optimization of Process Parameters in Deep Drawing Process Based on Orthogonal Experiment Method
,”
3rd International Conference on Mechanical Engineering and Intelligent Systems
,
Yinchuan, China
,
Aug. 15–16
, pp.
684
688
.
36.
SEIKO
,
2015
, “
Position Transducers Potentiometric up to 900 mm, IP55, Series KTC
,” http://www.inyepartes.com/wp-content/uploads/2015/03/EISSO_LINEAR-TRANSDUCERS1.pdf. Accessed Apr. 15, 2019.
37.
Hong Kong Bond Technology Limited, Shenzhen Bond Instrument Co., Ltd.
,
2016
, “
CFBLZ Spokes Load Sensor From 20 T to 100 T
,” http://szbonad.com/products-en-460.html. Accessed Apr. 15, 2019.
38.
Wenzhou Sanhe Measuring Instrument Co., Ltd.
,
2015
, “
0-10 mm Digital Micron Thickness Gauge 0.001 mm
,” http://www.shahemeasuring.com/product/0-10-mm-0-01-mm-digital-tube-thickness-gauge-%ef%bc%885321-1030-5320-1060%ef%bc%89/. Accessed June 17, 2019.
39.
Kuo
,
Y.
,
Yang
,
T.
, and
Huang
,
G.-W.
,
2008
, “
The Use of Grey Relational Analysis in Solving Multiple Attribute Decision-Making Problems
,”
Comput. Ind. Eng.
,
55
(
1
), pp.
80
93
.
40.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Zou
,
X.
,
Mendis
,
G. P.
,
Luan
,
X.
,
Liu
,
Z.
, and
Sutherland
,
J. W.
,
2018
, “
Modeling and Analysis of the Process Energy for Cylindrical Drawing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021001
.
41.
Daxin
,
E.
,
Mizuno
,
T.
, and
and Li
,
Z.
,
2008
, “
Stress Analysis of Rectangular Cup Drawing
,”
J. Mater. Process. Technol.
,
205
(
1
), pp.
469
476
.
42.
Hu
,
J.
,
Marciniak
,
Z.
, and
Duncan
,
J.
,
2002
,
Mechanics of Sheet Metal Forming
,
Elsevier
,
New York
.
43.
Alturk
,
R.
,
Mates
,
S.
,
Xu
,
Z.
, and
Abu-Farha
,
F.
,
2017
, “
Effects of Microstructure on the Strain Rate Sensitivity of Advanced Steels
,”
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings
,
San Diego, CA
,
Feb. 26–Mar. 2
,
Springer
,
New York
, pp.
243
254
.
44.
Alturk
,
R.
,
Luecke
,
W. E.
,
Mates
,
S.
,
Araujo
,
A.
,
Raghavan
,
K. S.
, and
Abu-Farha
,
F.
,
2017
, “
Rate Effects on Transformation Kinetics in a Metastable Austenitic Stainless Steel
,”
Procedia Eng.
,
207
, pp.
2006
2011
.
You do not currently have access to this content.