Additive manufacturing (AM) is a novel fabrication technique capable of producing highly complex parts. Nevertheless, a major challenge is the quality assurance of the AM fabricated parts. While there are several ways of approaching this problem, how to develop informative process signatures to detect part anomalies for quality control is still an open question. The objective of this study is to build a new layer-wise process signature model to characterize the thermal-defect relationship. Based on melt pool images, we propose novel layer-wise key process signatures, which are calculated using multilinear principal component analysis (MPCA) and are directly correlated with the layer-wise quality of the part. The resultant layer-wise quality features can be used to predict the overall defect distribution of a fabricated layer during the build. The proposed model is validated through a case study based on a direct laser deposition experiment, where the layer-wise quality of the part is predicted on the fly. The accuracy of prediction is calculated using three measures (i.e., recall, precision, and F-score), showing reasonable success of the proposed methodology in predicting layer-wise quality. The proposed quality prediction methodology enables online process correction to eliminate anomalies and to ultimately improve the quality of the fabricated parts.

References

1.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
2.
NIST
,
2013
,
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,
National Institute of Standards and Technology, U.S. Department of Commerce, Energetics Incorporated
,
Columbia, MD
.
3.
America Makes
,
2017
, “
Standardization Roadmap for Additive Manufacturing
,” ANSI.
4.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.
5.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
6.
Crespo
,
A.
,
Deus
,
A. M.
, and
Vilar
,
R.
,
2006
, “
Finite Element Analysis of Laser Powder Deposition of Titanium
,”
Proceedings of ICALEO
,
Scottsdale, AZ
,
2005
, pp.
1016
1021
.
7.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z.-K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L.-Q.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1–4
, pp.
52
63
.
8.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
9.
Chen
,
T.
, and
Zhang
,
Y.
,
2004
, “
Numerical Simulation of Two-Dimensional Melting and Resolidification of a Two-Component Metal Powder Layer in Selective Laser Sintering Process
,”
Numer. Heat Trans. A Appl.
,
46
(
7
), pp.
633
649
.
10.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2016
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051001
.
11.
Grasso
,
M.
,
Demir
,
A. G.
,
Previtali
,
B.
, and
Colosimo
,
B. M.
,
2018
, “
In Situ Monitoring of Selective Laser Melting of Zinc Powder Via Infrared Imaging of the Process Plume
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
229
239
.
12.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2018
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
51
(
5
), pp.
1
19
.
13.
Liu
,
J.
,
Liu
,
C.
,
Bai
,
Y.
,
Rao
,
P.
,
Williams
,
C.
, and
Kong
,
Z.
,
2018
, “
Layer-Wise Spatial Modeling of Porosity in Additive Manufacturing
,”
IISE Trans.
,
51
(
2
)
,
pp.
109
123
.
14.
Sharratt
,
B. M.
,
2015
, “
Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes
,” Defence Research Reports.
15.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.
16.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
.
17.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.
18.
Yao
,
B.
,
Imani
,
F.
,
Sakpal
,
A. S.
,
Reutzel
,
E. W.
, and
Yang
,
H.
,
2018
, “
Multifractal Analysis of Image Profiles for the Characterization and Detection of Defects in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031014
.
19.
Plott
,
J.
,
Tian
,
X.
, and
Shih
,
A.
,
2018
, “
Measurement and Modeling of Forces in Extrusion-Based Additive Manufacturing of Flexible Silicone Elastomer With Thin Wall Structures
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091009
.
20.
Corbin
,
D. J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Beese
,
A. M.
, and
Michaleris
,
P.
,
2018
, “
Effect of Substrate Thickness and Preheating on the Distortion of Laser Deposited Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061009
.
21.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2017
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
.
22.
Samie Tootooni
,
M.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
(James) Kong
,
Z.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
.
23.
Chowdhury
,
S.
,
Mhapsekar
,
K.
, and
Anand
,
S.
,
2017
, “
Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031009
.
24.
Brika
,
S. E.
,
Zhao
,
Y. F.
,
Brochu
,
M.
, and
Mezzetta
,
J.
,
2017
, “
Multi-Objective Build Orientation Optimization for Powder Bed Fusion by Laser
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111011
.
25.
Aboutaleb
,
A. M.
,
Tschopp
,
M. A.
,
Rao
,
P. K.
, and
Bian
,
L.
,
2017
, “
Multi-Objective Accelerated Process Optimization of Part Geometric Accuracy in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101001
.
26.
Yan
,
J.
,
Battiato
,
I.
, and
Fadel
,
G. M.
,
2017
, “
A Mathematical Model-Based Optimization Method for Direct Metal Deposition of Multimaterials
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081011
.
27.
Garnier
,
V.
,
Piwakowski
,
B.
,
Abraham
,
O.
,
Villain
,
G.
,
Payan
,
C.
, and
Chaix
,
J. F.
,
2013
, “
Acoustic Techniques for Concrete Evaluation: Improvements, Comparisons and Consistency
,”
Construct. Build. Mater.
,
43
, pp.
598
613
.
28.
Soltani
,
F.
,
Goueygou
,
M.
,
Lafhaj
,
Z.
, and
Piwakowski
,
B.
,
2013
, “
Relationship Between Ultrasonic Rayleigh Wave Propagation and Capillary Porosity in Cement Paste With Variable Water Content
,”
NDT E Int.
,
54
, pp.
75
83
.
29.
Cai
,
X.
,
Malcolm
,
A. A.
,
Wong
,
B. S.
, and
Fan
,
Z.
,
2015
, “
Measurement and Characterization of Porosity in Aluminium Selective Laser Melting Parts Using X-Ray CT
,”
Virtual Phys. Prototyp.
,
10
(
4
), pp.
195
206
.
30.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “Directed Energy Deposition Processes,”
Additive Manufacturing Technologies
,
I.
Gibson
, ed.,
Springer
,
New York, NY
, pp.
245
268
.
31.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. B: Eng.
,
143
, pp.
172
196
.
32.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
.
33.
Costa
,
L.
,
Reti
,
T.
,
Deus
,
A.
, and
Vilar
,
R.
,
2002
, “
Simulation of Layer Overlap Tempering Kinetics in Steel Parts Deposited by Laser Cladding
,”
Proceedings of International Conference on Metal Powder Deposition for Rapid Manufacturing
,
Princeton, NJ
,
April
,
MPIF
, pp.
172
176
.
34.
Costa
,
L.
,
Vilar
,
R.
,
Reti
,
T.
, and
Deus
,
A. M.
,
2005
, “
Rapid Tooling by Laser Powder Deposition: Process Simulation Using Finite Element Analysis
,”
Acta Mater.
,
53
(
14
), pp.
3987
3999
.
35.
Antony
,
K.
,
Arivazhagan
,
N.
, and
Senthilkumaran
,
K.
,
2014
, “
Numerical and Experimental Investigations on Laser Melting of Stainless Steel 316L Metal Powders
,”
J. Manuf. Process.
,
16
(
3
), pp.
345
355
.
36.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
.
37.
Andreotta
,
R.
,
Ladani
,
L.
, and
Brindley
,
W.
,
2017
, “
Finite Element Simulation of Laser Additive Melting and Solidification of Inconel 718 With Experimentally Tested Thermal Properties
,”
Finite Elements Anal. Des.
,
135
, pp.
36
43
.
38.
Denlinger
,
E. R.
,
Jagdale
,
V.
,
Srinivasan
,
G. V.
,
El-Wardany
,
T.
, and
Michaleris
,
P.
,
2016
, “
Thermal Modeling of Inconel 718 Processed With Powder Bed Fusion and Experimental Validation Using In Situ Measurements
,”
Addit. Manuf.
,
11
, pp.
7
15
.
39.
Riedlbauer
,
D.
,
Scharowsky
,
T.
,
Singer
,
R. F.
,
Steinmann
,
P.
,
Körner
,
C.
, and
Mergheim
,
J.
,
2017
, “
Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1309
1317
.
40.
Roy
,
S.
,
Juha
,
M.
,
Shephard
,
M. S.
, and
Maniatty
,
A. M.
,
2018
, “
Heat Transfer Model and Finite Element Formulation for Simulation of Selective Laser Melting
,”
Comput. Mech.
,
62
(
3
), pp.
273
284
.
41.
Pitassi
,
D.
,
Savoia
,
E.
,
Fontanari
,
V.
,
Molinari
,
A.
,
Luchin
,
V.
,
Zappini
,
G.
, and
Benedetti
,
M.
,
2018
, “Finite Element Thermal Analysis of Metal Parts Additively Manufactured Via Selective Laser Melting,”
Finite Element Method—Simulation, Numerical Analysis and Solution Techniques
,
P.
Răzvan
, ed.,
InTechOpen
,
Rijeka, Croatia
, pp.
123
154
.
42.
Huang
,
Y.
,
Yang
,
L. J.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2016
, “
Finite Element Analysis of Thermal Behavior of Metal Powder During Selective Laser Melting
,”
Int. J. Therm. Sci.
,
104
, pp.
146
157
.
43.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
.
44.
Cheng
,
B.
,
Lane
,
B.
,
Whiting
,
J.
, and
Chou
,
K.
,
2018
, “
A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111008
.
45.
Vastola
,
G.
,
Pei
,
Q. X.
, and
Zhang
,
Y. W.
,
2018
, “
Predictive Model for Porosity in Powder-Bed Fusion Additive Manufacturing at High Beam Energy Regime
,”
Addit. Manuf.
,
22
, pp.
817
822
.
46.
Bruna-Rosso
,
C.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2018
, “
Selective Laser Melting Finite Element Modeling: Validation With High-Speed Imaging and Lack of Fusion Defects Prediction
,”
Mater. Des.
,
156
, pp.
143
153
.
47.
Soro
,
N.
,
Brassart
,
L.
,
Chen
,
Y.
,
Veidt
,
M.
,
Attar
,
H.
, and
Dargusch
,
M. S.
,
2018
, “
Finite Element Analysis of Porous Commercially Pure Titanium for Biomedical Implant Application
,”
Mater. Sci. Eng. A
,
725
, pp.
43
50
.
48.
Li
,
J.
,
Wang
,
Q.
, and
(Pan) Michaleris
,
P.
,
2018
, “
An Analytical Computation of Temperature Field Evolved in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101004
.
49.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
.
50.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
.
51.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
52.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1089
1101
.
53.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
54.
Lane
,
B.
,
Moylan
,
S.
,
Whitenton
,
E. P.
, and
Ma
,
L.
,
2016
, “
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST
,”
Rapid Prototyp. J.
,
22
(
5
), pp.
778
787
.
55.
Cunningham
,
R.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2017
, “
Synchrotron-Based X-Ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V
,”
JOM
,
69
(
3
), pp.
479
484
.
56.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
.
57.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
58.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
59.
Khanzadehdaghalian
,
M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Thompson
,
S. M.
,
2016
, “
Porosity Detection of Laser Based Additive Manufacturing Using Melt Pool Morphology Clustering
,”
Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International
,
Austin, TX
, pp.
1487
1494
.
60.
Kanko
,
J. A.
,
Sibley
,
A. P.
, and
Fraser
,
J. M.
,
2016
, “
In Situ Morphology-Based Defect Detection of Selective Laser Melting Through Inline Coherent Imaging
,”
J. Mater. Process. Technol.
,
231
, pp.
488
500
.
61.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
999
1014
.
62.
Lu
,
H.
,
Plataniotis
,
K. N.
, and
Venetsanopoulos
,
A. N.
,
2008
, “
MPCA: Multilinear Principal Component Analysis of Tensor Objects
,”
IEEE Trans. Neural Netw.
,
19
(
1
), pp.
18
39
.
63.
Matoušek
,
J.
,
2002
,
Lectures on Discrete Geometry
, Vol.
212
,
Springer
,
New York
.
64.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
,
22
(
4
), pp.
469
483
.
65.
Nelson
,
L. S.
,
1986
, “
Control Chart for Multiple Stream Processes
,”
J. Qual. Technol.
,
18
(
4
), pp.
255
256
.
66.
Kotsiantis
,
S. B.
,
2007
, “
Supervised Machine Learning: A Review of Classification Techniques
,”
Informatica
,
31
, pp.
249
268
.
67.
Burges
,
C. J. C.
,
1998
, “
A Tutorial on Support Vector Machines for Pattern Recognition
,”
Data Mining Knowl. Discov.
,
2
(
2
), pp.
121
167
.
68.
Marshall
,
G. J.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2016
, “
Data Indicating Temperature Response of Ti–6Al–4V Thin-Walled Structure During Its Additive Manufacture Via Laser Engineered Net Shaping
,”
Data Brief
,
7
, pp.
697
703
.
69.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
.
70.
Dubitzky
,
W.
,
Granzow
,
M.
, and
Berrar
,
D. P.
,
2007
,
Fundamentals of Data Mining in Genomics and Proteomics
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.