This study investigates the prediction of maraging steel C250 microgrinding forces by incorporating phase transformation effects with the manufacturing process mechanics. The results could consequently increase the accuracy of the prediction and better understand the influence of phase evolution on the materials processing. Based on a detailed analysis of microgrinding mechanics and thermodynamics, an iterative blending scheme integrating phase transformation kinetics and material genome analysis is developed. The physical-based formulation, experimental validation, and computational configuration are presented herein for the microgrinding forces, quantifying phase transformation effects. According to the results, the implementation of the iterative blending scheme can help achieve a higher prediction accuracy of microgrinding forces. Besides, the iterative blending would enable the consideration of the interactive relation between process mechanics and microstructure evolution through materials genome analysis.

References

References
1.
Wu
,
C.
,
Pang
,
J.
,
Li
,
B. Z.
, and
Liang
,
S. Y.
,
2019
, “
High Speed Grinding of HIP-SiC Ceramics on Transformation of Microscopic Features
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1913
1921
.
2.
Hou
,
H.
,
Qi
,
L.
, and
Zhao
,
Y. H.
,
2013
, “
Effect of Austenitizing Temperature on the Mechanical Properties of High-Strength Maraging Steel
,”
Mater. Sci. Eng. A
,
587
, pp.
209
212
.
3.
Guo
,
Z.
,
Sha
,
W.
, and
Li
,
D.
,
2004
, “
Quantification of Phase Transition Kinetics of 18 Wt.% Ni C250 Maraging Steel
,”
Mater. Sci. Eng. A
,
373
(
1–2
), pp.
10
20
.
4.
Bai
,
J. X.
,
Bai
,
Q. S.
,
Tong
,
Z.
, and
Guo
,
H.
,
2018
, “
Theoretical Model for Subsurface Microstructure Prediction in Micro-Machining Ti-6Al-4V Alloy-Experimental Validation
,”
Int. J. Mech. Sci.
148
, pp.
64
72
.
5.
Jackson
,
M. J.
, and
Whitfield
,
M. D.
,
2010
, “
Microgrinding and Ultra-Precision Processes
,”
Nano and Micromachining
,
J. P.
Davim
, and
M. J.
Jackson
, eds.,
ISTE
,
London
, Chap. 5.
6.
Ding
,
Z. S.
,
Li
,
B. Z.
,
Fergani
,
O.
,
Shao
,
Y.
, and
Liang
,
S. Y.
,
2016
, “
Investigation of Temperature and Energy Partition During Maraging Steel Micro-Grinding
,”
Proc. CIRP
,
56
(
Complete
), pp.
284
288
.
7.
Wirtz
,
C.
,
Mueller
,
S.
,
Mattfeld
,
P.
, and
Klocke
,
F.
,
2017
, “
A Discussion on Material Removal Mechanisms in Grinding of Cemented Carbides
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121002
.
8.
Lee
,
B. S.
,
Abelson
,
J. R.
,
Bishop
,
S. G.
,
Kang
,
D. H.
,
Cheong
,
B. K.
, and
Kim
,
K. B.
,
2005
, “
Investigation of the Optical and Electronic Properties of Gesbte Phase Change Material in Its Amorphous, Cubic, and Hexagonal Phases
,”
J. Appl. Phys.
,
97
(
9
), p.
093509
.
9.
Zhang
,
Z. G.
,
Zhang
,
N.
,
Peng
,
J.
,
Fang
,
X. M.
,
Gao
,
X. N.
, and
Fang
,
Y. T.
,
2012
, “
Preparation and Thermal Energy Storage Properties of Paraffin/Expanded Graphite Composite Phase Change Material
,”
Appl. Energy
,
91
(
1
), pp.
426
431
.
10.
Hecker
,
R. L.
,
Liang
,
S. Y.
,
Wu
,
X. J.
,
Xia
,
P.
, and
Jin
,
D. G. W.
,
2007
, “
Grinding Force and Power Modeling Based on Chip Thickness Analysis
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5–6
), pp.
449
459
.
11.
Sawa
,
T.
,
Nishikawa
,
N.
, and
Ikuse
,
Y.
,
2015
, “
Evaluation of Grinding Performance by Mechanical Properties of Super Abrasive Wheel—Evaluation of Grade by Grinding Force
,”
Key Eng. Mater.
,
656–657
, pp.
266
270
.
12.
Lohrmann
,
J.
,
Kukowski
,
N.
,
Adam
,
J.
, and
Oncken
,
O.
,
2003
, “
The Impact of Analogue Material Properties on the Geometry, Kinematics, and Dynamics of Convergent Sand Wedges
,”
J. Struct. Geol.
,
25
(
10
), pp.
1691
1711
.
13.
Zhuang
,
K. J.
,
Weng
,
J.
,
Zhu
,
D. H.
, and
Ding
,
H.
,
2018
, “
Analytical Modeling and Experimental Validation of Cutting Forces Considering Edge Effects and Size Effects With Round Chamfered Ceramic Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081012
.
14.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2003
, “
Force Modelling in Shallow Cuts With Large Negative Rake Angle and Large Nose Radius Tools—Application to Hard Turning
,”
Int. J. Adv. Manuf. Technol.
,
22
(
9–10
), pp.
626
632
.
15.
Akbari
,
M.
,
Buhl
,
S.
,
Leinenbach
,
C.
, and
Wegener
,
K.
,
2016
, “
A New Value for Johnson Cook Damage Limit Criterion in Machining With Large Negative Rake Angle as Basis for Understanding of Grinding
,”
J. Mater. Process. Technol.
,
234
, pp.
58
71
.
16.
Azizi
,
A.
, and
Mohamadyari
,
M.
,
2015
, “
Modeling and Analysis of Grinding Forces Based on the Single Grit Scratch
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1223
1231
.
17.
Weber
,
M.
,
Autenrieth
,
H.
,
Kotschenreuther
,
J.
,
Gumbsch
,
P.
,
Schulze
,
V.
,
Lohe
,
D.
, and
Fleischer
,
J.
,
2008
, “
Influence of Friction and Process Parameters on the Specific Cutting Force and Surface Characteristics in Micro Cutting
,”
Mach. Sci. Technol.
,
12
(
4
), pp.
474
497
.
18.
Fleischer
,
J.
,
Lanza
,
G.
,
Schlipf
,
M.
,
Kotschenreuther
,
J.
, and
Peters
,
J.
,
2006
, “
Process Parameter Analysis on Surface Roughness and Process Forces in Micro Cutting
,”
Second International Conference on Multi-Material Micro Manufacture
,
Grenoble, France
,
Sept. 20-22
, pp.
289
292
.
19.
Anandita
,
S.
,
Mote
,
R. G.
, and
Singh
,
R.
,
2017
, “
Stochastic Analysis of Microgrinding Tool Topography and Its Role in Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121013
.
20.
Yiğit
,
M. A.
, and
Tuğrul
,
Ö.
,
2015
, “
Prediction of Machining Induced Microstructure in Ti-6Al-4V Alloy Using 3-d Fe-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions
,”
J. Mater. Process. Technol.
220
, pp.
1
26
.
21.
Lee
,
P. H.
,
Nam
,
J. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2012
, “
An Experimental Study on Micro-Grinding Process With Nanofluid Minimum Quantity Lubrication (mql)
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
331
338
.
22.
Yin
,
L.
,
Spowage
,
A. C.
,
Ramesh
,
K.
,
Huang
,
H.
,
Pickering
,
J. P.
, and
Vancoille
,
E. Y. J.
,
2004
, “
Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides
,”
Int. J. Mach. Tool. Manuf.
,
44
(
5
), pp.
533
543
.
23.
Khangar
,
A. A.
,
Kenik
,
E. A.
, and
Dahotre
,
N. B.
,
2005
, “
Microstructure and Microtexture in Laser-Dressed Alumina Grinding Wheel Material
,”
Ceram. Int.
,
31
(
4
), pp.
621
629
.
24.
Gong
,
Y. D.
,
Zhou
,
Y. G.
,
Wen
,
X. L.
,
Cheng
,
J.
,
Sun
,
Y.
, and
Ma
,
L. J.
,
2017
, “
Experimental Study on Micro-Grinding Force and Subsurface Microstructure of Nickel-Based Single Crystal Superalloy in Micro Grinding
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3397
3410
.
25.
Zhao
,
B.
,
Ma
,
H.
, and
Xie
,
P.
,
2009
, “
Study on the Ceramic Grinding Crack Propagation Mechanism Under the Ultrasonic Action by Using Nonlocal Theory
,”
Adv. Mater. Res.
,
69–70
(
12
), pp.
64
68
.
26.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X. P.
,
Yang
,
J. G.
,
Chiang
,
K. N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
27.
Park
,
H. W.
, and
Liang
,
S. Y.
,
2008
, “
Force Modeling of Micro-Grinding Incorporating Crystallographic Effects
,”
Int. J. Mach. Tools Manuf.
48
(
15
), pp.
1658
1667
.
28.
Venkatachalam
,
S.
,
Li
,
X. P.
,
Fergani
,
O.
,
Yang
,
J. G.
, and
Liang
,
S. Y.
,
2013
, “
Crystallographic Effects on Microscale Machining of Polycrystalline Brittle Materials
,”
J. Micro Nano Manuf.
,
1
(
4
), p.
041001
.
29.
Fergani
,
O.
, and
Liang
,
S. Y.
,
2013
, “
Materials-Affected Manufacturing
,”
Manuf. Lett.
,
1
(
2–4
), pp.
74
77
.
30.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
1992
,
Phase Transformation in Metals and Alloys
,
Stanley Thornes Ltd
,
London, UK
.
31.
Ding
,
Z. S.
,
Li
,
B. Z.
, and
Liang
,
S. Y.
,
2015
, “
Maraging C250 Steel Phase Transformation and Residual Stress During Grinding
,”
Mater. Lett.
,
154
, pp.
37
39
.
32.
Han
,
S.
,
Melkote
,
S. N.
,
Haluska
,
M. S.
, and
Watkins
,
T. R.
,
2008
, “
White Layer Formation Due to Phase Transformation in Orthogonal Machining of AISI 1045 Annealed Steel
,”
Mater. Sci. Eng. A
,
488
(
1
), pp.
195
204
.
33.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2017
, “
A New Microstructure-Sensitive Flow Stress Model for the High-Speed Machining of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051006
.
34.
Wang
,
Q. Q.
, and
Liu
,
Z. Q.
,
2018
, “
Microhardness Prediction Based on a Microstructure-Sensitive Flow Stress Model During High Speed Machining Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091003
.
35.
Fan
,
Y.
,
Yang
,
Z.
,
Cheng
,
P.
,
Egland
,
K.
, and
Yao
,
Y. L.
,
2004
, “
Numerical and Experimental Investigation of Microstructure Evolution and Mechanical Behavior of Steel in Laser Forming
,”
Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics
,
San Francisco, CA
,
Jan. 1
.
36.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Role of Phase Transformation in Chip Segmentation During High Speed Machining of Dual Phase Titanium Alloys
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3048
3066
.
37.
Leblond
,
J. B.
, and
Devaux
,
J.
,
1984
, “
A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including Effect of Austenite Grain Size
,”
Acta Metall.
,
32
(
1
), pp.
137
146
.
38.
Ding
,
Z. S.
,
Li
,
B. Z.
,
Shao
,
Y. M.
, and
Liang,
S. Y.
,
2016
, “
Phase Transition at High Heating Rate and Strain Rate During Maraging Steel C250 Grinding
,”
Mater. Manuf. Processes
,
31
(
13
), pp.
1763
1769
.
39.
Jakus
,
A. E.
,
Fredenberg
,
D.
,
McCoy
,
A. T.
,
Thadhani
,
N.
, and
Cochran
,
J. K.
,
2012
, “
Dynamic Deformation and Fragmentation Response of Maraging Steel Linearcellular Alloy
,”
AIP Conf. Proc.
,
1426
(
1
), pp.
1363
1366
.
40.
Kim
,
H. J.
,
Kim
,
N. K.
, and
Kwak
,
J. S.
,
2006
, “
Heat Flux Distribution Model by Sequential Algorithm of Inverse Heat Transfer for Determining Workpiece Temperature in Creep Feed Grinding
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2086
2093
.
You do not currently have access to this content.