The synergistic effect of combining different modification methods was investigated in this study to improve the interlaminar toughness and delamination resistance of fiber reinforced polymers (FRP). Epoxy-compatible polysulfone (PSU) was end-capped with epoxide group through functionalization, and the fiber surface was chemically grafted with an amino functional group to form a micron-size rough surface. Consequently, the long chain of PSU entangles into cross-linked thermoset epoxy network, additionally, epoxide group on PSU further improves the bonding through chemical connection to the epoxy network and amino group on the fiber surface. The combined modification methods can generate both strong physical and chemical bonding. The feasibility of using this method in vacuum-assisted resin transfer molding was determined by rheometer. The impact of formed chemical bonds on the cross-linking density was examined through glass transition temperatures. The chemical modifications were characterized by Raman spectroscopy to determine the chemical structures. Synergistic effect of the modification was established by mode I and mode II fracture tests, which quantify the improvement on composites delamination resistance and toughness. The mechanism of synergy was explained based on the fracture mode and interaction between the modification methods. Finally, numerical simulation was used to compare samples with and without modifications. The experiment results showed that synergy is achieved at low concentration of modified PSU because the formed chemical bonds compensate the effect of low cross-linking density and interact with the modified fiber.

References

References
1.
Sprenger
,
S.
,
Kinloch
,
A. J.
,
Taylor
,
A. C.
, and
Mohammed
,
R. D.
,
2005
, “
Rubber-Toughened GFRCs Optimised by Nanoparticles
,”
JEC Compos.
,
21
, pp.
66
69
.
2.
Tsai
,
J.-L.
,
Huang
,
B.-H.
, and
Cheng
,
Y.-L.
,
2009
, “
Enhancing Fracture Toughness of Glass/Epoxy Composites by Using Rubber Particles Together With Silica Nanoparticles
,”
J. Compos. Mater.
,
43
(
25
), pp.
3107
3123
.
3.
Uddin
,
M.
, and
Sun
,
C.
,
2010
, “
Improved Dispersion and Mechanical Properties of Hybrid Nanocomposites
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
223
230
.
4.
Heijden
,
S. V. D.
,
Daelemans
,
L.
,
Schoenmaker
,
B. D.
,
Baere
,
I. D.
,
Rahier
,
H.
,
Paepegem
,
W. V.
, and
Clerck
,
K. D.
,
2014
, “
Interlaminar Toughening of Resin Transfer Moulded Glass Fibre Epoxy Laminates by Polycaprolactone Electrospun Nanofibres
,”
Compos. Sci. Technol.
,
104
, pp.
66
73
.
5.
Li
,
G.
,
Li
,
P.
,
Zhang
,
C.
,
Yu
,
Y.
,
Liu
,
H.
,
Zhang
,
S.
,
Jia
,
X.
,
Yang
,
X.
,
Xue
,
Z.
, and
Ryu
,
S.
,
2008
, “
Inhomogeneous Toughening of Carbon Fiber/Epoxy Composite Using Electrospun Polysulfone Nanofibrous Membranes by In Situ Phase Separation
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
987
994
.
6.
Villoria
,
R. G. D.
,
Hallander
,
P.
,
Ydrefors
,
L.
,
Nordin
,
P.
, and
Wardle
,
B.
,
2016
, “
In-Plane Strength Enhancement of Laminated Composites via Aligned Carbon Nanotube Interlaminar Reinforcement
,”
Compos. Sci. Technol.
,
133
, pp.
33
39
.
7.
Li
,
P.
,
Liu
,
D.
,
Zhu
,
B.
,
Li
,
B.
,
Jia
,
X.
,
Wang
,
L.
,
Li
,
G.
, and
Yang
,
X.
,
2015
, “
Synchronous Effects of Multiscale Reinforced and Toughened CFRP Composites by MWNTs-EP/PSF Hybrid Nanofibers With Preferred Orientation
,”
Compos. Part A Appl. Sci. Manuf.
,
68
, pp.
72
80
.
8.
Cairns
,
D.
,
Mandell
,
J.
,
Scott
,
M.
, and
Maccagnano
,
J.
,
1999
, “
Design and Manufacturing Considerations for Ply Drops in Composite Structures
,”
Compos. Part B Eng.
,
30
(
5
), pp.
523
534
.
9.
Grassi
,
M.
,
Cox
,
B.
, and
Zhang
,
X.
,
2006
, “
Simulation of Pin-Reinforced Single-Lap Composite Joints
,”
Compos. Sci. Technol.
,
66
(
11–12
), pp.
1623
1638
.
10.
Rajasekaran
,
R.
, and
Alagar
,
M.
,
2007
, “
Mechanical Properties of Bismaleimides Modified Polysulfone Epoxy Matrices
,”
Int. J. Polym. Mater.
,
56
(
9
), pp.
911
927
.
11.
Wu
,
G.
,
Ma
,
L.
,
Wang
,
Y.
,
Liu
,
L.
, and
Huang
,
Y.
,
2016
, “
Interfacial Properties and Impact Toughness of Methylphenylsilicone Resin Composites by Chemically Grafting POSS and Tetraethylenepentamine Onto Carbon Fibers
,”
Compos. Part A Appl. Sci. Manuf.
,
84
, pp.
1
8
.
12.
Alessi
,
S.
,
Conduruta
,
D.
,
Pitarresi
,
G.
,
Dispenza
,
C.
, and
Spadaro
,
G.
,
2010
, “
Hydrothermal Ageing of Radiation Cured Epoxy Resin-Polyether Sulfone Blends as Matrices for Structural Composites
,”
Polym. Degrad. Stab.
,
95
(
4
), pp.
677
683
.
13.
Mutua
,
F. N.
,
Lin
,
P.
,
Koech
,
J. K.
, and
Wang
,
Y.
,
2012
, “
Surface Modification of Hollow Glass Microspheres
,”
MSA Mater. Sci. Appl.
,
3
(
12
), pp.
856
860
.
14.
Perez
,
R.
,
Sandler
,
J.
,
Altstädt
,
V.
,
Hoffmann
,
T.
,
Pospiech
,
D.
,
Ciesielski
,
M.
,
Döring
,
M.
,
Braun
,
U.
,
Balabanovich
,
A.
, and
Schartel
,
B.
,
2007
, “
Novel Phosphorus-Modified Polysulfone as a Combined Flame Retardant and Toughness Modifier for Epoxy Resins
,”
Polymer
,
48
(
3
), pp.
778
790
.
15.
Bian
,
D.
,
Beeksma
,
B.
,
Shim
,
D. J.
,
Jones
,
M.
, and
Yao
,
Y. L.
,
2017
, “
Interlaminar Toughening of GFRP, Part 1: Bonding Improvement through Diffusion and Precipitation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071011
.
16.
Bian
,
D.
,
Beeksma
,
B.
,
Shim
,
D. J.
,
Jones
,
M.
, and
Yao
,
Y. L.
,
2017
, “
Interlaminar Toughening of GFRP, Part 2: Characterization and Numerical Simulation of Curing Kinetics
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071012
.
17.
Rajagopalan
,
G.
,
Immordino
,
K. M.
,
Gillespie
,
J. W.
, and
McKnight
,
S. H.
,
2000
, “
Diffusion and Reaction of Epoxy and Amine in Polysulfone Studied Using Fourier Transfer Infrared Spectroscopy: Experimental Results
,”
Polymer
,
41
, pp.
2591
2602
.
18.
Aksoy
,
A.
, and
Carlsson
,
L.
,
1991
, “
Crack Tip Yield Zone Estimates in Mode II Interlaminar Fracture of Interleaved Composites
,”
Eng. Fract. Mech.
,
39
(
3
), pp.
525
534
.
19.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2007
, “
Cohesive Zone Modeling of Mode I Fracture in Adhesive Bonded Joints
,”
Key Eng. Mater.
,
348
, pp.
13
16
.
20.
Xie
,
D.
, and
Biggers
,
S. B.
,
2006
, “
Strain Energy Release Rate Calculation for a Moving Delamination Front of Arbitrary Shape Based on the Virtual Crack Closure Technique. Part I: Formulation and Validation
,”
Eng. Fract. Mech.
,
73
(
6
), pp.
771
785
.
21.
Zhao
,
L.
,
Zhi
,
J.
,
Zhang
,
J.
,
Liu
,
Z.
, and
Hu
,
N.
,
2016
, “
XFEM Simulation of Delamination in Composite Laminates
,”
Compos. Part A Appl. Sci. Manuf.
,
80
, pp.
61
71
.
22.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
Oct. 1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
23.
abaqus User Manual
, “
Section 36.1.0: Surface-Based Cohesive Behavior
.”. Dassault Systemes.
24.
Wang
,
J.
,
Seah
,
S.
,
Wong
,
E.
, and
Cadge
,
D.
,
2008
, “
Fracture Mechanics Study of Fatigue Crack Growth in Solder Joints Under Drop Impact
,”
58th Electronic Components and Technology Conference.
,
Lake Buena Vista, FL
,
May 27–30
.
25.
Ansys Engineer Data Source
, Composite Materials, Epoxy_Eglass_UD and Resin_Epoxy.
26.
Yu
,
W.
,
Qian
,
M.
, and
Li
,
H.
,
2016
, “
Elastic and Plastic Properties of Epoxy Resin Syntactic Foams Filled With Hollow Glass Microspheres and Glass Fibers
,”
J. Appl. Polym. Sci.
,
133
(
46
), p.
44188
.
27.
Lapique
,
F.
, and
Redford
,
K.
,
2002
, “
Curing Effects on Viscosity and Mechanical Properties of a Commercial Epoxy Resin Adhesive
,”
Int. J. Adhes. Adhes.
,
22
(
4
), pp.
337
346
.
28.
Lyon
,
R. E.
,
Chike
,
K. E.
, and
Angel
,
S. M.
,
1994
, “
In Situ Cure Monitoring of Epoxy Resins Using Fiber-Optic Raman Spectroscopy
,”
J. Appl. Polym. Sci.
,
53
(
13
), pp.
1805
1812
.
29.
Miyagawa
,
H.
,
Rich
,
M. J.
, and
Drzal
,
L. T.
,
2004
, “
Amine-Cured Epoxy/Clay Nanocomposites. I. Processing and Chemical Characterization
,”
J. Polym. Sci. B Polym. Phys.
,
42
(
23
), pp.
4384
4390
.
30.
Carrero
,
C. A.
,
Keturakis
,
C. J.
,
Orrego
,
A.
,
Schomäcker
,
R.
, and
Wachs
,
I. E.
,
2013
, “
Anomalous Reactivity of Supported V2O5 Nanoparticles for Propane Oxidative Dehydrogenation: Influence of the Vanadium Oxide Precursor
,”
Dalton Trans.
,
42
(
35
), p.
12644
.
31.
Lee
,
E. L.
, and
Wachs
,
I. E.
,
2008
, “
In Situ Raman Spectroscopy of SiO2-Supported Transition Metal Oxide Catalysts: An Isotopic 18O−16O Exchange Study
,”
J. Phys. Chem. C
,
112
(
16
), pp.
6487
6498
.
32.
Vanoverbeke
,
E.
,
Carlier
,
V.
,
Devaux
,
J.
,
Carter
,
J.
,
Mcgrail
,
P.
, and
Legras
,
R.
,
2000
, “
The Use of Raman Spectroscopy to Study the Reaction Between an Amine-Terminated Thermoplastic and Epoxy Resins
,”
Polymer
,
41
(
23
), pp.
8241
8245
.
33.
Gupta
,
S.
,
Ramamurthy
,
P. C.
, and
Madras
,
G.
,
2011
, “
Synthesis and Characterization of Flexible Epoxy Nanocomposites Reinforced With Amine Functionalized Alumina Nanoparticles: A Potential Encapsulant for Organic Devices
,”
Polym. Chem.
,
2
(
1
), pp.
221
228
.
34.
Zhang
,
X.
,
Yan
,
X.
,
Guo
,
J.
,
Liu
,
Z.
,
Jiang
,
D.
,
He
,
Q.
,
Wei
,
H.
,
Gu
,
H.
,
Colorado
,
H. A.
,
Zhang
,
X.
,
Wei
,
S.
, and
Guo
,
Z.
,
2015
, “
Polypyrrole Doped Epoxy Resin Nanocomposites With Enhanced Mechanical Properties and Reduced Flammability
,”
J. Mater. Chem. C
,
3
(
1
), pp.
162
176
.
You do not currently have access to this content.