This paper evaluates the performances of dry, minimum quantity lubrication (MQL), and MQL with nanofluid conditions in turning of the most common titanium (Ti) alloy, Ti-6Al-4 V, in a solution treated and aged (STA) microstructure. In particular, the nanofluid evaluated here is vegetable (rapeseed) oil mixed with small concentrations of exfoliated graphite nanoplatelets (xGnPs). This paper focuses on turning process that imposes a challenging condition to apply the oil or nanofluid droplets directly onto the tribological surfaces of a cutting tool due to the uninterrupted engagement between tool and work material during cutting. A series of turning experiments was conducted with uncoated carbide inserts, while measuring the cutting forces with a dynamometer under the dry, MQL and MQL with nanofluid conditions supplying oil droplets externally from our MQL device. The inserts are retrieved intermittently to measure the progress of flank and crater wear using a confocal microscopy. This preliminary experimental result shows that MQL and in particular MQL with the nanofluid significantly improve the machinability of Ti alloys even in turning process. However, to attain the best performance, the MQL conditions such as nozzle orientation and the concentration of xGnP must be optimized.

References

References
1.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
(
1–2
),
103
114
.
2.
Gogia
,
A. K.
,
2005
, “
High-Temperature Titanium Alloys
,”
Def. Sci. J.
,
55
(
2
), pp.
149
173
.
3.
Avedesian
,
M. M.
, and
Baker
,
H.
,
1999
,
ASM Specialty Handbook: Magnesium and Magnesium Alloys
,
ASM International
,
Novelty, OH
, pp.
95
97
.
4.
Christoph
,
L.
, and
Manfred
,
P.
,
2003
,
Titanium and Titanium Alloys: Fundamentals and Applications
,
WileyVCH
,
Köln
.
5.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
6.
Hartung
,
P. D.
,
Kramer
,
B. M.
and
Von Turkovich
,
B. F.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann. Manuf. Technol.
,
31
(
1
), pp.
75
80
.
7.
Donachie
,
M. J.
,
2000
,
Titanium: A Technical Guide
,
ASM International
,
Novelty, OH
.
8.
Klocke
,
F.
, and
Eisenblätter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann.
,
46
(
2
), pp.
519
526
.
9.
Kelly
,
J. F.
, and
Cotterell
,
M. G.
,
2002
, “
Minimal Lubrication Machining of Aluminium Alloys
,”
J. Mater. Process. Technol.
,
120
(
1–3
), pp.
327
334
.
10.
Sreejith
,
P. S.
, and
Ngoi
,
B. K. A.
,
2000
, “
Dry Machining: Machining of the Future
,”
J. Mater. Process. Technol.
,
101
(
1–3
), pp.
287
291
.
11.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
and
Petuelli
,
G.
,
2006
, “
Effect of MQL on the Tool Life of Small Twist Drills in Deep-Hole Drilling
,”
Int. J. Mach. Tools Manuf.
,
46
(
1
), pp.
1
6
.
12.
Yoshimura
,
H.
,
Itoigawa
,
F.
,
Nakamura
,
T.
, and
Niwa
,
K.
,
2005
, “
Development of Nozzle System for Oil-on-Water Droplet Metalworking Fluid and Its Application to Practical Production Line
,”
JSME Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
48
(
4
), pp.
723
729
.
13.
Shen
,
B.
,
Malshe
,
A. P.
,
Kalita
,
P.
, and
Shih
,
A. J.
,
2008
, “
Performance of Novel MoS2 Nanoparticles Based Grinding Fluids in Minimum Quantity Lubrication Grinding
,”
Trans. NAMRI/SME
,
36
, pp.
357
364
.
14.
Park
,
K. H.
,
Shantanu
,
J.
,
Kwon
,
P.
,
Drazl
,
L. T.
, and
Do
,
I.
,
2010
, “
Minimum Quantity Lubrication (MQL) With Nanographene-Enhanced Lubricates: Ballmilling Experiment
,”
Trans. NAMRI/SME
,
38
, pp.
81
88
.
15.
Lee
,
P. H.
,
Nam
,
J. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2012
, “
An Experimental Study on Micro-Grinding Process With Nanofluid Minimum Quantity Lubrication (MQL)
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
331
338
.
16.
Lee
,
P. H.
,
Lee
,
S. W.
,
Lim
,
S. H.
,
Lee
,
S. H.
,
Ko
,
H. S.
, and
Shin
,
S. W.
,
2015
, “
A Study on Thermal Characteristics of Micro-Scale Grinding Process Using Nanofluid Minimum Quantity Lubrication (MQL)
,”
Int. J. Precis. Eng. Manuf.
,
16
(
9
), pp.
1899
1909
.
17.
Attanasio
,
A.
,
Gelfi
,
M.
,
Giardini
,
C.
, and
Remino
,
C.
,
2006
, “
Minimal Quantity Lubrication in Turning: Effect on Tool Wear
,”
Wear
,
260
(
3
), pp.
333
338
.
18.
Bruni
,
C.
,
Forcellese
,
A.
,
Gabrielli
,
F.
, and
Simoncini
,
M.
,
2006
, “
Effect of the Lubrication-Cooling Technique, Insert Technology and Machine Bed Material on the Workpart Surface Finish and Tool Wear in Finish Turning of AISI 420B
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1547
1554
.
19.
Dhar
,
N. R.
,
Ahmed
,
M. T.
, and
Islam
,
S.
,
2007
, “
An Experimental Investigation on Effect of Minimum Quantity Lubrication in Machining AISI 1040 Steel
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
748
753
.
20.
Khan
,
M. M. A.
,
Mithu
,
M. A. H.
, and
Dhar
,
N. R.
,
2009
, “
Effects of Minimum Quantity Lubrication on Turning AISI 9310 Alloy Steel Using Vegetable Oil-Based Cutting Fluid
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5573
5583
.
21.
Hwang
,
Y. K.
, and
Lee
,
C. M.
,
2010
, “
Surface Roughness and Cutting Force Prediction in MQL and Wet Turning Process of AISI 1045 Using Design of Experiments
,”
J. Mech. Sci. Technol.
,
24
(
8
), pp.
1669
1677
.
22.
Leppert
,
T.
,
2011
, “
Effect of Cooling and Lubrication Conditions on Surface Topography and Turning Process of C45 Steel
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
120
126
.
23.
Reddy
,
K. D.
, and
Venkataramaiah
,
D. P.
,
2012
, “
Experimental Investigation on Responses in Turning of Aluminium With Carbide Tipped Tool at Different Coolant Conditions
,”
Int. J. Mech. Eng. Technol.
,
3
(
2
), pp.
189
199
.
24.
Hadad
,
M.
, and
Sadeghi
,
B.
,
2013
, “
Minimum Quantity Lubrication-MQL Turning of AISI 4140 Steel Alloy
,”
J. Cleaner Prod.
,
54
, pp.
332
343
.
25.
Lohar
,
D. V.
, and
Nanavaty
,
C. R.
,
2013
, “
Performance Evaluation of Minimum Quantity Lubrication (MQL) Using CBN Tool During Hard Turning of AISI 4340 and Its Comparison With Dry and Wet Turning
,”
Bonfring Int. J. Ind. Eng. Manage. Sci.
,
3
(
3
), pp.
102
106
.
26.
Saini
,
A.
,
Dhiman
,
S.
,
Sharma
,
R.
, and
Setia
,
S.
,
2014
, “
Experimental Estimation and Optimization of Process Parameters Under Minimum Quantity Lubrication and Dry Turning of AISI-4340 With Different Carbide Inserts
,”
J. Mech. Sci. Technol.
,
28
(
6
), pp.
2307
2318
.
27.
Revankar
,
G. D.
,
Shetty
,
R.
,
Rao
,
S. S.
, and
Gaitonde
,
V. N.
,
2013
, “
Response Surface Model for Surface Roughness During Finish Turning of Titanium Alloy Under Minimum Quantity Lubrication
,”
International Conference on Emerging Trends in Engineering and Technology
,
Phuket, Thailand
,
Dec. 7–8
, pp.
78
84
.
28.
Raza
,
S. W.
,
Pervaiz
,
S.
, and
Deiab
,
I.
,
2014
, “
Tool Wear Patterns When Turning of Titanium Alloy Using Sustainable Lubrication Strategies
,”
Int. J. Precis. Eng. Manufac.
,
15
(
9
), pp.
1979
1985
.
29.
Liu
,
Z.
,
Xu
,
J.
,
Han
,
S.
, and
Chen
,
M.
,
2013
, “
A Coupling Method of Response Surfaces (CRSM) for Cutting Parameters Optimization in Machining Titanium Alloy Under Minimum Quantity Lubrication (MQL) Condition
,”
Int. J. Precis. Eng. Manuf.
,
14
(
5
), pp.
693
702
.
30.
Gupta
,
M. K.
, and
Sood
,
P. K.
,
2017
, “
Surface Roughness Measurements in NFMQL Assisted Turning of Titanium Alloys: An Optimization Approach
,”
Friction
,
5
(
2
), pp.
155
170
.
31.
Gupta
,
M. K.
,
Sood
,
P. K.
, and
Sharma
,
V. S.
,
2016
, “
Optimization of Machining Parameters and Cutting Fluids During Nano-Fluid Based Minimum Quantity Lubrication Turning of Titanium Alloy by Using Evolutionary Techniques
,”
J. Cleaner Prod.
,
135
, pp.
1276
1288
.
32.
Sartori
,
S.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2018
, “
Solid Lubricant-Assisted Minimum Quantity Lubrication and Cooling Strategies to Improve Ti6Al4V Machinability in Finishing Turning
,”
Tribol. Int.
,
118
, pp.
287
294
.
33.
da Silva
,
R. B.
,
Machado
,
Á. R.
,
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Sales
,
W. F.
,
2013
, “
Tool Life and Wear Mechanisms in High Speed Machining of Ti–6Al–4 V Alloy With PCD Tools Under Various Coolant Pressures
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1459
1464
.
34.
Lütjering
,
G.
, and
Williams
,
J. C.
,
2007
,
Titanium
,
Springer-Verlag
,
Berlin
.
35.
Nguyen
,
D.
,
Kang
,
D.
,
Bieler
,
T.
,
Park
,
K.
, and
Kwon
,
P.
,
2017
, “
Microstructural Impact on Flank Wear During Turning of Various Ti-6Al-4V Alloys
,”
Wear
,
384
, pp.
72
83
.
36.
Park
,
K. H.
,
Ewald
,
B.
, and
Kwon
,
P. Y.
,
2011
, “
Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling
,”
ASME J. Tribol.
,
133
(
3
), p.
031803
.
37.
Nguyen
,
T.
,
Nguyen
,
D.
,
Howes
,
P.
,
Kwon
,
P.
, and
Park
,
K.-H.
,
2015
, “
Minimum Quantity Lubrication (MQL) Using Vegetable Oil With Nano-Platelet Solid Lubricant in Milling Titanium Alloy
,”
ASME International Manufacturing Science and Engineering Conference
,
Charlotte, NC
,
June 8–12
, p.
V002T05A014
.
38.
Park
,
K. H.
, and
Kwon
,
P. Y.
,
2011
, “
Flank Wear of Multi-Layer Coated Tool
,”
Wear
,
270
(
11–12
), pp.
771
780
.
39.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
.
40.
Venkatesh
,
V. C.
, and
Satchithanandam
,
M.
,
1980
, “
A Discussion on Tool Life Criteria and Total Failure Causes
,”
CIRP Ann. Manuf. Technol.
,
29
(
1
), pp.
19
22
.
41.
Boothroyd
,
G.
,
1988
,
Fundamentals of Metal Machining and Machine Tools
,
Vol. 28
,
CRC Press
,
Boca Raton, FL
.
42.
Kramer
,
B. M.
, and
Suh
,
N. P.
,
1980
, “
Tool Wear by Solution: A Quantitative Understanding
,”
J. Eng. Ind.
,
102
(
4
), pp.
303
309
.
43.
Nguyen
,
T.
,
Park
,
K.-H.
,
Wang
,
X.
,
Olortegui-Yume
,
J.
,
Wong
,
T.
,
Schrock
,
D.
,
Kim
,
W.
,
Kwon
,
P.
, and
Kramer
,
B.
,
2015
, “
The Genesis of Tool Wear in Machining
,”
ASME 2015 International Mechanical Engineering Congress and Exposition, Volume 15: Advances in Multidisciplinary Engineering
,
Houston, TX
,
Nov. 13–19
, p.
V015T19A013
.
You do not currently have access to this content.