Bulk metallic glasses (BMGs) are a series of metal alloys with an amorphous structure. The deformation of BMGs occurs in localized regions and is highly sensitive to the applied stress, strain rate, and temperature. This paper presents a coupled thermomechanical model to analyze the chip segmentation mechanism due to material shear localization in orthogonal cutting of Zr-BMG. The shear stress variation in the primary shear zone is modeled considering the tool-chip friction and large strain of the material. The constitutive property of BMG corresponding to the inhomogeneous deformation through shear transformation zones is modeled. The oscillations of shear stress, temperature, and free volume are simulated based on the cutting conditions. The predicted chip segmentation frequency is compared with the experimental result under different cutting speeds and uncut chip thicknesses. The developed model provides the fundamental mechanism of material deformation and chip formation in cutting Zr-BMG with an amorphous structure.

References

References
1.
Telford
,
M.
,
2004
, “
The Case for Bulk Metallic Glass
,”
Mater. Today
,
7
(
3
), pp.
36
43
.
2.
Maroju
,
N. K.
,
Yan
,
D. P.
,
Xie
,
B.
, and
Jin
,
X.
,
2018
, “
Investigations on Surface Microstructure in High-Speed Milling of Zr-Based Bulk Metallic Glass
,”
J. Manuf. Process.
,
35
, pp.
40
50
.
3.
Bakkal
,
M.
,
Shih
,
A. J.
,
Scattergood
,
R. O.
, and
Liu
,
C. T.
,
2004
, “
Machining of a Zr–Ti–Al–Cu–Ni Metallic Glass
,”
Scr. Mater.
,
50
(
5
), pp.
583
588
.
4.
Hartung
,
P. D.
,
Kramer
,
B. M.
, and
von Turkovich
,
B. F.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann.
,
31
(
1
), pp.
75
80
.
5.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
6.
Von Turkovich
,
B. F.
,
1982
, “
Cutting Forces, Tool Wear and Chip Segmentation in High Speed Machining
”, Advanced Machining Research Program (AMRP), Air Force System Command Report SRD-82-070, Third Annual Technical Report, pp.
1
17
.
7.
Dhale
,
K.
,
Banerjee
,
N.
,
Singh
,
R. K.
, and
Outeiro
,
J. C.
,
2019
, “
Investigation on Chip Formation and Surface Morphology in Orthogonal Machining of Zr-Based Bulk Metallic Glass
,”
Manuf. Lett.
,
19
, pp.
25
28
.
8.
Komanduri
,
R.
,
Schroeder
,
T.
,
Hazra
,
J.
,
von Turkovich
,
B. F.
, and
Flom
,
D. G.
,
1982
, “
On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel
,”
J. Eng. Ind.
,
104
(
2
), pp.
121
131
.
9.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
10.
Nakayama
,
K.
,
Arai
,
M.
, and
Kanda
,
T.
,
1988
, “
Machining Characteristics of Hard Materials
,”
CIRP Ann.
,
37
(
1
), pp.
89
92
.
11.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
.
12.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
The Mechanisms of Chip Formation in Machining Hardened Steels
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
528
535
.
13.
Von Turkovich
,
B. F.
,
1974
, “
Deformation Mechanics During Adiabatic Shear
,”
NAMRC-II: Second North American Metalworking Research Conference, Proceedings: College of Engineering, University of Wisconsin-Madison
,
Madison, WI
,
May 20–22
, pp.
682
690
.
14.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
1997
, “
Modeling of Thermomechanical Shear Instability in Machining
,”
Int. J. Mech. Sci.
,
39
(
11
), pp.
1273
1314
.
15.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.
16.
Elbestawi
,
M. A.
,
Srivastava
,
A. K.
, and
El-Wardany
,
T. I.
,
1996
, “
A Model for Chip Formation During Machining of Hardened Steel
,”
CIRP Ann.
,
45
(
1
), pp.
71
76
.
17.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Viscous Shear Banding in Cutting of Metals
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111004
.
18.
Yadav
,
S.
,
Feng
,
G.
, and
Sagapuram
,
D.
,
2019
, “
Dynamics of Shear Band Instabilities in Cutting of Metals
,”
CIRP Ann.
1
, in press.
19.
Davis
,
B.
,
Dabrow
,
D.
,
Ifju
,
P.
,
Xiao
,
G.
,
Liang
,
S. Y.
, and
Huang
,
Y.
,
2018
, “
Study of the Shear Strain and Shear Strain Rate Progression During Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
51007
.
20.
Zhang
,
L.
, and
Huang
,
H.
,
2019
, “
Micro Machining of Bulk Metallic Glasses: A Review
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
637
661
.
21.
Ueda
,
K.
, and
Manabe
,
K.
,
1992
, “
Chip Formation Mechanism in Microcutting of an Amorphous Metal
,”
CIRP Ann.
,
41
(
1
), pp.
129
132
.
22.
Suryanarayana
,
C.
, and
Inoue
,
A.
,
2017
,
Bulk Metallic Glasses
,
CRC Press
,
Boca Raton
.
23.
Schuh
,
C. A.
,
Hufnagel
,
T. C.
, and
Ramamurty
,
U.
,
2007
, “
Mechanical Behavior of Amorphous Alloys
,”
Acta Mater.
,
55
(
12
), pp.
4067
4109
.
24.
Spaepen
,
F.
,
1977
, “
A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses
,”
Acta Metall.
,
25
(
4
), pp.
407
415
.
25.
Argon
,
A. S.
,
1979
, “
Plastic Deformation in Metallic Glasses
,”
Acta Metall.
,
27
(
1
), pp.
47
58
.
26.
Huang
,
R.
,
Suo
,
Z.
,
Prevost
,
J. H.
, and
Nix
,
W. D.
,
2002
, “
Inhomogeneous Deformation in Metallic Glasses
,”
J. Mech. Phys. Solids
,
50
(
5
), pp.
1011
1027
.
27.
Bakkal
,
M.
,
Shih
,
A. J.
, and
Scattergood
,
R. O.
,
2004
, “
Chip Formation, Cutting Forces, and Tool Wear in Turning of Zr-Based Bulk Metallic Glass
,”
Int. J. Mach. Tool. Manuf.
,
44
(
9
), pp.
915
925
.
28.
Fujita
,
K.
,
Morishita
,
Y.
,
Nishiyama
,
N.
,
Kimura
,
H.
, and
Inoue
,
A.
,
2005
, “
Cutting Characteristics of Bulk Metallic Glass
,”
Mater. Trans.
,
46
(
12
), pp.
2856
2863
.
29.
Maroju
,
N. K.
, and
Jin
,
X.
,
2018
, “
Vibration-Assisted Dimple Generation on Bulk Metallic Glass
,”
Proc. Manuf.
,
26
, pp.
317
328
.
30.
Park
,
S. S.
,
Wei
,
Y.
, and
Jin
,
X.
,
2018
, “
Direct Laser Assisted Machining With a Sapphire Tool for Bulk Metallic Glass
,”
CIRP Ann.
,
67
(
1
), pp.
193
196
.
31.
Zhao
,
Y.
,
Lu
,
J.
,
Zhang
,
Y.
,
Wu
,
F.
, and
Huo
,
D.
,
2016
, “
Development of an Analytical Model Based on Mohr–Coulomb Criterion for Cutting of Metallic Glasses
,”
Int. J. Mech. Sci.
,
106
, pp.
168
175
.
32.
Jiang
,
M. Q.
, and
Dai
,
L. H.
,
2009
, “
Formation Mechanism of Lamellar Chips During Machining of Bulk Metallic Glass
,”
Acta Mater.
,
57
(
9
), pp.
2730
2738
.
33.
Lewandowski
,
J. J.
, and
Greer
,
A. L.
,
2006
, “
Temperature Rise at Shear Bands in Metallic Glasses
,”
Nat. Mater.
5
(
1
), pp.
15
18
.
34.
Xie
,
B.
,
Kumar
,
M. N.
,
Yan
,
D. P.
, and
Jin
,
X.
,
2017
, “
Material Behavior in Micro Milling of Zirconium Based Bulk Metallic Glass
,”
BT-TMS 2017, 146th Annual Meeting & Exhibition Supplemental Proceedings
,
San Diego
,
Feb. 26–Mar. 2
,
TMS Metals & Materials Society
, ed., pp.
363
373
.
35.
Wessels
,
V.
,
Grigoryev
,
A.
,
Dold
,
C.
,
Wyen
,
C.-F.
,
Roth
,
R.
,
Weingärtner
,
E.
, and
Löffler
,
J. F.
,
2012
, “
Abrasive Waterjet Machining of Three-Dimensional Structures From Bulk Metallic Glasses and Comparison With Other Techniques
,”
J. Mater. Res.
,
27
(
8
), pp.
1187
1192
.
36.
Raczy
,
A.
,
Elmadagli
,
M.
,
Altenhof
,
W. J.
, and
Alpas
,
A. T.
,
2004
, “
An Eulerian Finite-Element Model for Determination of Deformation State of a Copper Subjected to Orthogonal Cutting
,”
Metall. Mater. Trans. A
,
35
(
8
), pp.
2393
2400
.
37.
Shaw
,
M. C.
,
2003
, “
The Size Effect in Metal Cutting
,”
Sadhana
,
28
(
5
), pp.
875
896
.
38.
Rice
,
J. R.
,
1976
, “
Localization of Plastic Deformation
,”
14th International Congress of Theoretical and Applied Mechanics
,
Delft, Netherlands
,
Aug. 30
, pp.
202
220
.
39.
Johnson
,
W. L.
, and
Samwer
,
K.
,
2005
, “
A Universal Criterion for Plastic Yielding of Metallic Glasses With (T/Tg)2/3 Temperature Dependence
,”
Phys. Rev. Lett.
,
95
(
19
), p.
195501
.
40.
Falk
,
M. L.
, and
Langer
,
J. S.
,
1998
, “
Dynamics of Viscoplastic Deformation in Amorphous Solids
,”
Phys. Rev. E
,
57
(
6
), pp.
7192
7205
.
41.
Liu
,
W. D.
, and
Liu
,
K. X.
,
2010
, “
Mechanical Behavior of a Zr-Based Metallic Glass at Elevated Temperature Under High Strain Rate
,”
ASME J. Appl. Phys.
,
108
(
3
), p.
33511
.
42.
Zink
,
M.
,
Samwer
,
K.
,
Johnson
,
W. L.
, and
Mayr
,
S. G.
,
2006
, “
Validity of Temperature and Time Equivalence in Metallic Glasses During Shear Deformation
,”
Phys. Rev. B
,
74
(
1
), p.
12201
.
43.
Turnbull
,
D.
, and
Cohen
,
M. H.
,
1961
, “
Free-Volume Model of the Amorphous Phase: Glass Transition
,”
J. Chem. Phys.
,
34
(
1
), pp.
120
125
.
44.
Li
,
L.
,
Homer
,
E. R.
, and
Schuh
,
C. A.
,
2013
, “
Shear Transformation Zone Dynamics Model for Metallic Glasses Incorporating Free Volume as a State Variable
,”
Acta Mater.
,
61
(
9
), pp.
3347
3359
.
45.
Jiang
,
F.
,
Jiang
,
M. Q.
,
Wang
,
H. F.
,
Zhao
,
Y. L.
,
He
,
L.
, and
Sun
,
J.
,
2011
, “
Shear Transformation Zone Volume Determining Ductile–Brittle Transition of Bulk Metallic Glasses
,”
Acta Mater.
,
59
(
5
), pp.
2057
2068
.
46.
Heggen
,
M.
,
Spaepen
,
F.
, and
Feuerbacher
,
M.
,
2005
, “
Creation and Annihilation of Free Volume During Homogeneous Flow of a Metallic Glass
,”
ASME J. Appl. Phys.
,
97
, p.
033506
.
47.
Pan
,
D.
,
Inoue
,
A.
,
Sakurai
,
T.
, and
Chen
,
M. W.
,
2008
, “
Experimental Characterization of Shear Transformation Zones for Plastic Flow of Bulk Metallic Glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
39
), pp.
14769
14772
.
48.
Wang
,
W. H.
,
2012
, “
The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses
,”
Prog. Mater. Sci.
,
57
(
3
), pp.
487
656
.
49.
Altintas
,
Y.
,
2000
,
Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
50.
Recht
,
R. F.
,
1985
, “
A Dynamic Analysis of High-Speed Machining
,”
J. Eng. Ind.
,
107
(
4
), pp.
309
315
.
51.
Wright
,
W. J.
,
Schwarz
,
R. B.
, and
Nix
,
W. D.
,
2001
, “
Localized Heating During Serrated Plastic Flow in Bulk Metallic Glasses
,”
Mater. Sci. Eng. A
,
319–321
, pp.
229
232
.
52.
Bruck
,
H. A.
,
Rosakis
,
A. J.
, and
Johnson
,
W. L.
,
1996
, “
The Dynamic Compressive Behavior of Beryllium Bearing Bulk Metallic Glasses
,”
J. Mater. Res.
,
11
(
2
), pp.
503
511
.
53.
Zhao
,
M.
, and
Li
,
M.
,
2011
, “
Local Heating in Shear Banding of Bulk Metallic Glasses
,”
Scr. Mater.
,
65
(
6
), pp.
493
496
.
54.
Zhang
,
Y.
,
Stelmashenko
,
N. A.
,
Barber
,
Z. H.
,
Wang
,
W. H.
,
Lewandowski
,
J. J.
, and
Greer
,
A. L.
,
2007
, “
Local Temperature Rises During Mechanical Testing of Metallic Glasses
,”
J. Mater. Res.
,
22
(
2
), pp.
419
427
.
55.
Yang
,
B.
,
Liaw
,
P. K.
,
Wang
,
G.
,
Morrison
,
M.
,
Liu
,
C. T.
,
Buchanan
,
R. A.
, and
Yokoyama
,
Y.
,
2004
, “
In-Situ Thermographic Observation of Mechanical Damage in Bulk-Metallic Glasses During Fatigue and Tensile Experiments
,”
Intermetallics
,
12
(
10
), pp.
1265
1274
.
This content is only available via PDF.
You do not currently have access to this content.