Tailored blanks characterized by variable thickness were friction stir welded (FSWed) with the aim to obtain constant joint properties along the weld seam, regardless of the thickness change. To pursue this goal, the heat input was kept constant by in-process control of tool rotation. A dedicated numerical model of the process was used to determine the tool rotation values as a function of the sheet thickness. The mechanical properties and the microstructure of the FSWed joints, produced with varying process parameters, were studied. It was found that the proposed approach can produce joints with uniform properties along the weld line in terms of stress–strain curve shape, joint strength, elongation at failure, and microstructure.

References

References
1.
Kleiner
,
M.
,
Chatti
,
S.
, and
Klaus
,
A.
,
2006
, “
Metal Forming Techniques for Lightweight Construction
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
2
7
.
2.
Zadpoor
,
A. A.
,
Sinke
,
J.
, and
Benedictus
,
R.
,
2007
, “
Mechanics of Tailor Welded Blanks: An Overview
,”
Key Eng. Mater.
,
344
, pp.
373
382
.
3.
Chan
,
L. C.
,
Cheng
,
C. H.
,
Chan
,
S. M.
,
Lee
,
T. C.
, and
Chow
,
C. L.
,
2005
, “
Formability Analysis of Tailor-Welded Blanks of Different Thickness Ratios
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), p.
743
.
4.
Merklein
,
M.
,
Johannes
,
M.
,
Lechner
,
M.
, and
Kuppert
,
A.
,
2014
, “
A Review on Tailored Blanks—Production, Applications and Evaluation
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
151
164
.
5.
Cai
,
W.
,
Daehn
,
G.
,
Li
,
J.
,
Mishra
,
R.
,
Vivek
,
A.
,
Khan
,
H.
, and
Komarasamy
,
M.
,
2018
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), pp.
1
35
.
6.
Buffa
,
G.
,
Fratini
,
L.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2006
, “
Friction Stir Welding of Tailored Blanks: Investigation on Process Feasibility
,”
CIRP Ann.—Manuf. Technol.
,
55
(
1
), pp.
279
282
.
7.
Buffa
,
G.
,
Fratini
,
L.
, and
Shivpuri
,
R.
,
2008
, “
Finite Element Studies on Friction Stir Welding Processes of Tailored Blanks
,”
Comput. Struct.
,
86
(
1–2
), pp.
181
189
.
8.
Silva
,
M. B.
,
Skjoedt
,
M.
,
Vilaça
,
P.
,
Bay
,
N.
, and
Martins
,
P. A. F.
,
2009
, “
Single Point Incremental Forming of Tailored Blanks Produced by Friction Stir Welding
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
811
820
.
9.
Kim
,
D.
,
Lee
,
W.
,
Kim
,
J.
,
Chung
,
K. H.
,
Kim
,
C.
,
Okamoto
,
K.
,
Wagoner
,
R. H.
, and
Chung
,
K.
,
2010
, “
Macro-Performance Evaluation of Friction Stir Welded Automotive Tailor-Welded Blank Sheets: Part II—Formability
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
1063
1081
.
10.
Cabibbo
,
M.
,
Forcellese
,
A.
,
Simoncini
,
M.
,
Pieralisi
,
M.
, and
Ciccarelli
,
D.
,
2016
, “
Effect of Welding Motion and Pre-/Post-Annealing of Friction Stir Welded AA5754 Joints
,”
Mater. Des.
,
93
, pp.
146
159
.
11.
Cabibbo
,
M.
,
Forcellese
,
A.
,
El Mehtedi
,
M.
, and
Simoncini
,
M.
,
2014
, “
Double Side Friction Stir Welding of AA6082 Sheets: Microstructure and Nanoindentation Characterization
,”
Mater. Sci. Eng. A
,
590
, pp.
209
217
.
12.
Hou
,
Z.
,
Sheikh-Ahmad
,
J.
,
Jarrar
,
F.
, and
Ozturk
,
F.
,
2018
, “
Residual Stresses in Dissimilar Friction Stir Welding of AA2024 and AZ31: Experimental and Numerical Study
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051015
.
13.
Fu
,
R. D.
,
Ji
,
H. S.
,
Li
,
Y. J.
, and
Liu
,
L.
,
2012
, “
Effect of Weld Conditions on Microstructures and Mechanical Properties of Friction Stir Welded Joints on AZ31B Magnesium Alloys
,”
Sci. Technol. Weld. Join.
,
17
(
3
), pp.
174
179
.
14.
Liu
,
X.
,
Chen
,
G.
,
Ni
,
J.
, and
Feng
,
Z.
,
2017
, “
Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051004
.
15.
Wang
,
R.
,
Kang
,
H.-T.
, and
Jiang
,
C. C.
,
2016
, “
Fatigue Life Prediction for Overlap Friction Stir Linear Welds of Magnesium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061013
.
16.
Regev
,
M.
,
Spigarelli
,
S.
, and
Cabibbo
,
M.
,
2015
, “
Microstructure Stability During Creep of Friction Stir Welded AZ31B Magnesium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051021
.
17.
Forcellese
,
A.
, and
Simoncini
,
M.
,
2012
, “
Plastic Flow Behaviour and Formability of Friction Stir Welded Joints in AZ31 Thin Sheets Obtained Using the ‘Pinless’ Tool Configuration
,”
Mater. Des.
,
36
, pp.
123
129
.
18.
Buffa
,
G.
,
Campanella
,
D.
,
Forcellese
,
A.
,
Fratini
,
L.
,
La Commare
,
U.
, and
Simoncini
,
M.
,
2018
, “
In-Process Control Strategies for Friction Stir Welding of AZ31 Sheets With Non-Uniform Thickness
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
493
504
.
19.
Buffa
,
G.
,
Campanella
,
D.
,
Forcellese
,
A.
,
Fratini
,
L.
, and
Simoncini
,
M.
,
2017
, “
In-Process Tool Rotational Speed Variation With Constant Heat Input in Friction Stir Welding of AZ31 Sheets With Variable Thickness
,”
AIP Conf. Proc.
1896
, p.
110008
.
20.
Buffa
,
G.
,
Baffari
,
D.
,
Di Caro
,
A.
, and
Fratini
,
L.
,
2015
, “
Friction Stir Welding of Dissimilar Aluminium–Magnesium Joints: Sheet Mutual Position Effects
,”
Sci. Technol. Weld. Join.
,
20
(
4
), pp.
271
279
.
21.
Forcellese
,
A.
,
El Mehtedi
,
M.
,
Simoncini
,
M.
, and
Spigarelli
,
S.
,
2007
, “
Formability and Microstructure of AZ31 Magnesium Alloy Sheets
,”
Key Eng. Mater.
,
344
, pp.
31
38
.
22.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
,
2006
, “
A Continuum Based FEM Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
389
396
.
23.
Buffa
,
G.
,
Forcellese
,
A.
,
Fratini
,
L.
, and
Simoncini
,
M.
,
2012
, “
Experimental and Numerical Analysis on FSWed Magnesium Alloy Thin Sheets Obtained Using ‘Pin’ and ‘Pinless’ Tool
,”
Key. Eng. Mater.
, 504–506, pp.
747
752
.
24.
Forcellese
,
A.
,
Martarelli
,
M.
, and
Simoncini
,
M.
,
2016
, “
Effect of Process Parameters on Vertical Forces and Temperatures Developed During Friction Stir Welding of Magnesium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
595
604
.
25.
Spigarelli
,
S.
,
Ruano
,
O. A.
,
El Mehtedi
,
M.
, and
del Valle
,
J. A.
,
2013
, “
High Temperature Deformation and Microstructural Instability in AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
570
, pp.
135
148
.
26.
Chang
,
C. I.
,
Lee
,
C. J.
, and
Huang
,
J. C.
,
2004
, “
Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys
,”
Scr. Mater.
,
51
(
6
), pp.
509
514
.
You do not currently have access to this content.