Assembly interface of aircraft vertical tail is a large thin-wall structure and made from titanium alloys, which causes easily machining vibration, deformation and undercutting in finish machining due to its low stiffness, low thermal conductivity, and high chemical activity. To address these problems, a novel eddy current damper for assembly interfaces machining (ECD-AIM) is proposed to suppress multimodal vibration in the machining of the assembly interfaces. Within the context, the mathematical model of damping performance of the damper is established based on the principle of electromagnetic induction, based on which a novel design of the damper is proposed, and optimized by considering the relationship between damping performance and the key components of the damper. Then, the dynamics model of the suppression system of the assembly interface machining is established, where the relationship between vibration velocity and damping performance of the damper is obtained by using numerical analysis and finite element simulation. Finally, the damping performance of the damper is validated in terms of the three configurations (no applied ECD-AIM, a single ECD-AIM, and dual ECD-AIMs) via a set of dynamic tests (impact tests and harmonic tests) and cutting tests. The test results demonstrate that the configuration of dual ECD-AIMs can guarantee stability and reliability of assembly interface machining. The proposed damper can provide a feasible solution for vibration suppression in a limited workspace.

References

References
1.
Lei
,
P.
, and
Zheng
,
L. Y.
,
2017
, “
An Automated In-Situ Alignment Approach for Finish Machining Assembly Interfaces of Large-Scale Components
,”
Robot, Cim-Int. Manuf.
,
46
, pp.
130
143
.
2.
Lei
,
P.
,
Zheng
,
L. Y.
,
Xiao
,
W. L.
,
Li
,
C.
, and
Wang
,
D. X.
,
2017
, “
A Closed-Loop Machining System for Assembly Interfaces of Large-Scale Component Based on Extended STEP-NC
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5
), pp.
2499
2525
.
3.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2016
, “
Modelling of Dynamic Instability via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4 V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
.
4.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4 V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
.
5.
Tanveer
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2017
, “
A Thermal Model to Predict Tool Temperature in Machining of Ti-6Al-4 V Alloy With an Atomization-Based Cutting Fluid Spray System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071016
.
6.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
.
7.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann-Manuf. Technol.
,
65
(
2
), pp.
785
808
.
8.
Yang
,
Y.
,
Pei
,
X.
, and
Lin
,
J.
,
2017
, “
Vibration Attenuation of Five-Axis Milling Based on Viscoelastic Damping Material
,”
J. Aeronaut. Manuf. Technol.
,
7
, pp.
78
81
.
9.
Kolluru
,
K.
,
Axinte
,
D.
, and
Becker
,
A.
,
2013
, “
A Solution for Minimizing Vibrations in Milling of Thin Walled Casings by Applying Dampers to Workpiece Surface
,”
CIRP Ann-Manuf. Technol.
,
62
(
1
), pp.
415
418
.
10.
Beijen
,
M. A.
,
Voorhoeve
,
R.
, and
Heertjes
,
M. F.
,
2018
, “
Experimental Estimation of Transmissibility Matrices for Industrial Multi-Axis Vibration Isolation Systems
,”
Mech. Syst. Signal Pr.
,
107
, pp.
469
483
.
11.
Yang
,
Z. C.
,
Yang
,
F.
, and
Zhang
,
L. L.
,
2009
, “
Flutter Suppression for Sandwich Panel Using Dynamic Absorber
,”
J. Vib. Shock
,
28
(
2
), pp.
25
27
.
12.
Kolluru
,
K.
,
Axinte
,
D.
, and
Raffles
,
M. H.
,
2014
, “
Vibration Suppression and Coupled Interaction Study in Milling of Thin Wall Casings in the Presence of Tuned Mass Dampers
,”
Proc. Inst. Mech. Eng. Part B
,
228
(
6
), pp.
826
836
.
13.
Wang
,
M.
,
Zan
,
T.
,
Yang
,
Y.
, and
Fei
,
R.
,
2010
, “
Design and Implementation of Nonlinear TMD for Chatter Suppression: An Application in Turning Processes
,”
Int. J. Mach. Tool Manufact.
,
50
(
5
), pp.
474
479
.
14.
Yang
,
Y. Q.
,
Xie
,
R.
, and
Liu
,
Q.
,
2017
, “
Design of a Passive Damper With Tunable Stiffness and its Application in Thin-Walled Part Milling
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
2713
2720
.
15.
Burtscher
,
J.
, and
Fleischer
,
J.
,
2017
, “
Adaptive Tuned Mass Damper With Variable Mass for Chatter Avoidance
,”
CIRP Ann-Manuf. Technol.
,
66
(
1
), pp.
397
400
.
16.
Ebrahimi
,
B.
,
Khamesee
,
M. B.
, and
Golnaraghi
,
F.
,
2009
, “
A Novel Eddy Current Damper: Theory and Experiment
,”
J. Phys. D: Appl. Phys.
,
42
(
7
), p.
075001
.
17.
Kou
,
B. Q.
,
Jin
,
Y. X.
, and
Zhang
,
H.
,
2015
, “
Development and Application Prospects of the Electromagnetic Damper
,”
Chin. Soc. Elec. Eng.
,
35
(
12
), pp.
3132
3143
.
18.
Sodano
,
H. A.
, and
Bae
,
J. S.
,
2004
, “
Eddy Current Damping in Structures
,”
Shock Vib. Dig.
,
36
(
6
), pp.
469
478
.
19.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
,
2005
, “
Concept and Model of Eddy Current Damper for Vibration Suppression of a Beam
,”
J. Sound Vib.
,
288
(
4–5
), pp.
1177
1196
.
20.
Kolluru
,
K.
, and
Axinte
,
D.
,
2014
, “
Novel Ancillary Device for Minimizing Machining Vibrations in Thin Wall Assemblies
,”
Int. J. Mach. Tool Manufact.
,
85
(
6
), pp.
79
86
.
21.
Liu
,
S. L.
, and
Zheng
,
S. Y.
,
2011
, “
Improved Passive Electromagnetic Damper and its Application
,”
J. Vib. Shock
,
30
(
9
), pp.
94
97
.
22.
Wang
,
Z. H.
,
Zhang
,
C.
,
Zhou
,
J. Z.
, and
Xu
,
Z. Y.
,
2017
, “
Tests for a Prefabricated Vertical TMD With Eddy-Current Damping
,”
J. Vib. Shock
,
36
(
1
), pp.
16
22
.
23.
Ao
,
W. K.
, and
Reynolds
,
P.
,
2017
, “Analytical and Experimental Study of Eddy Current Damper for Vibration Suppression in a Footbridge Structure,”
Dynamics of Civil Structures
, Vol.
2
,
Springer
,
Cham
, pp.
131
138
.
24.
Kienholz
,
D. A.
,
Smith
,
C. A.
, and
Haile
,
W. B.
,
1996
, “
Magnetically Damped Vibration Isolation System for a Space Shuttle Payload
,”
Proc. SPIE
,
2720
, pp.
272
280
.
25.
Xiao
,
D. H.
,
Pan
,
Q.
, and
He
,
T.
,
2014
, “
Design and Analysis of a Novel Eddy Current Damper
,”
J. Noise Vib. Control
,
34
(
6
), pp.
197
201
.
26.
He
,
T.
,
Xiao
,
D. H.
, and
Liu
,
X.
,
2013
, “
Design and Analysis of a Novel Eddy Current Damper Based on Three-Dimensional Transient Analysis
,”
J. Vibroeng.
,
15
(
1
), pp.
46
64
.
27.
Wang
,
Z.
,
Chen
,
Z.
, and
Wang
,
J.
,
2012
, “
Feasibility Study of a Large-Scale Tuned Mass Damper With Eddy Current Damping Mechanism
,”
J. Earthquake Eng. Eng. Vib.
,
11
(
3
), pp.
391
401
.
28.
Lu
,
Z.
,
Huang
,
B.
,
Zhang
,
Q.
, and
Lu
,
X.
,
2018
, “
Experimental and Analytical Study on Vibration Control Effects of Eddy-Current Tuned Mass Dampers Under Seismic Excitations
,”
J. Sound Vib.
,
421
, pp.
153
165
.
29.
Bae
,
J. S.
,
Hwang
,
J. H.
,
Roh
,
J. H.
,
Kim
,
J. H.
,
Yi
,
M. S.
, and
Lim
,
J. H.
,
2012
, “
Vibration Suppression of a Cantilever Beam Using Magnetically Tuned-Mass-Damper
,”
J. Sound Vib.
,
331
(
26
), pp.
5669
5684
.
30.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2017
, “
Design and Machining Application of a Two-dof Magnetic Tuned Mass Damper
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1635
1643
.
31.
Ransom
,
T.
,
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Tunable Dynamics Platform for Milling Experiments
,”
Precis. Eng.
,
44
, pp.
252
256
.
32.
Yang
,
Y.
,
Xu
,
D.
, and
Liu
,
Q.
,
2015
, “
Milling Vibration Attenuation by Eddy Current Damping
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
445
454
.
33.
Badowski
,
E.
,
2015
, “
Improved Machining Stability of Thin-Walled Aluminum Parts Through Eddy Current Damping
,” PhD dissertation.
Hamilton, Ontario, Canada
.
34.
Aguirre
,
G.
,
Gorostiaga
,
M.
,
Porchez
,
T.
, and
Munoa
,
J.
,
2013
, “
Self-Tuning Dynamic Vibration Absorber for Machine Tool Chatter Suppression
,”
28th Annual Meeting of the American Society for Precision Engineering (ASPE)
,
St. Paul, MN
,
Oct. 2013
.
35.
Butt
,
A. M.
,
Yang
,
Y.
,
Pei
,
X.
, and
Liu
,
Q.
,
2018
, “
Five-Axis Milling Vibration Attenuation of Freeform Thin-Walled Part by Eddy Current Damping
,”
Precis. Eng.
,
51
, pp.
682
690
.
36.
Yip
,
W. S.
, and
To
,
S.
,
2017
, “
Tool Life Enhancement in Dry Diamond Turning of Titanium Alloys Using an Eddy Current Damping and a Magnetic Field for Sustainable Manufacturing
,”
J. Clean. Prod.
,
168
, pp.
929
939
.
37.
Zuo
,
L.
,
Chen
,
X.
, and
Nayfeh
,
S.
,
2011
, “
Design and Analysis of a New Type of Electromagnetic Damper With Increased Energy Density
,”
ASME J. Vib. Acoust.
,
133
, pp.
1485
1489
.
38.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
.
39.
Huang
,
T.
,
Zhu
,
L.
,
Du
,
S.
,
Chen
,
Z.
, and
Ding
,
H.
,
2018
, “
Robust Active Chatter Control in Milling Processes With Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101005
.
40.
Papagiannopoulos
,
G. A.
, and
Hatzigeorgiou
,
G. D.
,
2011
, “
On the Use of the Half-Power Bandwidth Method to Estimate Damping in Building Structures
,”
Soil. Dyn. Earthq. Eng.
,
31
(
7
), pp.
1075
1079
.
You do not currently have access to this content.