The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements.

References

References
1.
Schmidt
,
M.
,
Merklein
,
M.
,
Bourell
,
D.
,
Dimitrov
,
D.
,
Hausotte
,
T.
,
Wegener
,
K.
,
Overmeyer
,
L.
,
Vollertsen
,
F.
, and
Levy
,
G. N.
,
2017
, “
Laser Based Additive Manufacturing in Industry and Academia
,”
CIRP Ann.
,
66
(
2
), pp.
561
583
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
Berlin
.
3.
Tofail
,
S. A. M.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
4.
Khoda
,
B.
,
Benny
,
T.
,
Rao
,
P. K.
,
Sealy
,
M. P.
, and
Zhou
,
C.
,
2017
, “
Applications of Laser-Based Additive Manufacturing
,”
Laser-Based Additive Manufacturing of Metal Parts
,
CRC Press
,
Boca Raton, FL
, pp.
253
298
.
5.
Badiru
,
A. B.
,
Valencia
,
V. V.
, and
Liu
,
D.
,
2017
,
Additive Manufacturing Handbook: Product Development for the Defense Industry
,
CRC Press
,
Boca Raton, FL
.
6.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
7.
Liu
,
Q. C.
,
Elambasseril
,
J.
,
Sun
,
S. J.
,
Leary
,
M.
,
Brandt
,
M.
, and
Sharp
,
P. K.
,
2014
, “
The Effect of Manufacturing Defects on the Fatigue Behaviour of Ti-6Al-4V Specimens Fabricated Using Selective Laser Melting
,”
Proceedings of the Advanced Materials Research
,
Melbourne, Australia
,
Mar. 2–7
, pp.
1519
1524
.
Trans Tech Publications
.
8.
Gorelik
,
M.
,
2017
, “
Additive Manufacturing in the Context of Structural Integrity
,”
Int. J. Fatigue
,
94
(
Part 2
), pp.
168
177
.
9.
Seifi
,
M.
,
Gorelik
,
M.
,
Waller
,
J.
,
Hrabe
,
N.
,
Shamsaei
,
N.
,
Daniewicz
,
S.
, and
Lewandowski
,
J. J.
,
2017
, “
Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification
,”
JOM
,
69
(
3
), pp.
439
455
.
10.
Lewandowski
,
J. J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
151
186
.
11.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
(
3
), pp.
112
224
.
12.
Foteinopoulos
,
P.
,
Papacharalampopoulos
,
A.
, and
Stavropoulos
,
P.
,
2018
, “
On Thermal Modeling of Additive Manufacturing Processes
,”
CIRP J. Manuf. Sci. Technol.
,
20
(
1
), pp.
66
83
.
13.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
14.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1
), pp.
616
622
.
15.
Raghavan
,
N.
,
Dehoff
,
R.
,
Pannala
,
S.
,
Simunovic
,
S.
,
Kirka
,
M.
,
Turner
,
J.
,
Carlson
,
N.
, and
Babu
,
S. S.
,
2016
, “
Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
112
(
11
), pp.
303
314
.
16.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
(
7
), pp.
431
445
.
17.
Maskery
,
I.
,
Aboulkhair
,
N. T.
,
Corfield
,
M. R.
,
Tuck
,
C.
,
Clare
,
A. T.
,
Leach
,
R. K.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2016
, “
Quantification and Characterisation of Porosity in Selectively Laser Melted Al–Si10–Mg Using X-Ray Computed Tomography
,”
Mater. Charact.
,
111
(
1
), pp.
193
204
.
18.
Hadadzadeh
,
A.
,
Amirkhiz
,
B. S.
,
Li
,
J.
, and
Mohammadi
,
M.
,
2018
, “
Columnar to Equiaxed Transition During Direct Metal Laser Sintering of AlSi10Mg Alloy: Effect of Building Direction
,”
Addit. Manuf.
,
23
(
5
), pp.
121
131
.
19.
Roberts
,
I. A.
,
Wang
,
C.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.
20.
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
Multiscale Modeling of Powder Bed-Based Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
93
123
.
21.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R.
,
Hodge
,
N.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
22.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
(
7
), pp.
36
45
.
23.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
24.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.
25.
O’Regan
,
P.
,
Prickett
,
P.
,
Setchi
,
R.
,
Hankins
,
G.
, and
Jones
,
N.
,
2016
, “
Metal Based Additive Layer Manufacturing: Variations, Correlations and Process Control
,”
Proc. Comput. Sci.
,
96
(
19
), pp.
216
224
.
26.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
27.
Huang
,
Y.
, and
Leu
,
M.
,
2013
, “
Frontiers of Additive Manufacturing Research and Education—Report of NSF Additive Manufacturing Workshop
,”
National Science Foundation
,
Arlington, VA
.
28.
NIST
,
2013
,
Measurement Science Roadmap for Metal-Based Additive Manufacturing - Report Prepared by Energetics Corporation
,” National Institute of Standards and Technology, Gaithersburg, MD.
29.
Mazumder
,
J.
,
2015
, “
Design for Metallic Additive Manufacturing Machine With Capability for ‘Certify as You Build’
,”
Proc. CIRP
,
36
(
10
), pp.
187
192
.
30.
Edgar
,
T.
,
Davis
,
J.
, and
Burka
,
M.
,
2015
, “
NSF Workshop on Research Needs in Advanced Sensors, Controls, Platforms, and Modeling (ASCPM) for Smart Manufacturing
,”
National Science Foundation
,
Atlanta, GA
.
31.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
(
1
), pp.
166
178
.
32.
Gu
,
H.
,
Gong
,
H.
,
Pal
,
D.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel
,”
Proceedings of the 2013 Solid Freeform Fabrication Symposium.
,
University of Texas, Austin
,
Aug. 12–14
, pp.
474
489
.
33.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1–4
(
1
), pp.
87
98
.
34.
Gong
,
H.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2012
, “
Effect of Defects on Fatigue Tests of As-Built Ti-6Al-4V Parts Fabricated by Selective Laser Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
University of Texas, Austin
,
Aug. 6–8
, pp.
499
506
.
35.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.
36.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.
37.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Proc. CIRP
,
45
(
6
), pp.
131
134
.
38.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R.
, and
Evans
,
K.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1247
1254
.
39.
Thomas
,
D.
,
2009
, “
The Development of Design Rules for Selective Laser Melting
,”
Ph.D. Dissertation
,
University of Wales
. http://hdl.handle.net/10369/913.
40.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing
,”
Surf. Topogr.: Metrol. Prop.
,
3
(
1
), p.
014003
.
41.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
42.
Bandyopadhyay
,
A.
, and
Traxel
,
K. D.
,
2018
, “
Invited Review Article: Metal-Additive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
(
4
), pp.
758
774
.
43.
Denlinger
,
E. R.
,
Gouge
,
M.
, and
Michaleris
,
P.
,
2018
,
Thermo-Mechanical Modeling of Additive Manufacturing
,
Butterworth-Heinemann
,
London
.
44.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
,
Newman
,
C. K.
,
Haut
,
T.
,
Bakosi
,
J.
,
Gibbs
,
J. W.
,
Livescu
,
V.
,
Vander Wiel
,
S. A.
,
Clarke
,
A. J.
,
Schraad
,
M. W.
,
Blacker
,
T.
,
Lim
,
H.
,
Rodgers
,
T.
,
Owen
,
S.
,
Abdeljawad
,
F.
,
Madison
,
J.
,
Anderson
,
A. T.
,
Fattebert
,
J. L.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Khairallah
,
S. A.
, and
Walton
,
O.
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
.
45.
Cheng
,
B.
,
Shrestha
,
S.
, and
Chou
,
Y. K.
,
2016
, “
Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting
,”
Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–30
, p.
V003T008A009
.
46.
Williams
,
R. J.
,
Davies
,
C. M.
, and
Hooper
,
P. A.
,
2018
, “
A Pragmatic Part Scale Model for Residual Stress and Distortion Prediction in Powder Bed Fusion
,”
Addit. Manuf.
,
22
(
4
), pp.
416
425
.
47.
Zeng
,
K.
,
Pal
,
D.
,
Gong
,
H. J.
,
Patil
,
N.
, and
Stucker
,
B.
,
2015
, “
Comparison of 3DSIM Thermal Modelling of Selective Laser Melting Using New Dynamic Meshing Method to ANSYS
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
945
956
.
48.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
(
3
), pp.
318
332
.
49.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
(
9
), pp.
51
60
.
50.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Gatrell
,
B. A.
,
Budzinski
,
J.
,
Tomonto
,
C.
,
Neidig
,
J.
,
Shankar
,
M. R.
,
Billo
,
R.
,
Go
,
D. B.
, and
Hoelzle
,
D.
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model
,”
Addit. Manuf.
,
22
, pp.
852
868
.
51.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2014
, “
Multiphysics Modeling and Simulation of Selective Laser Sintering Manufacturing Processes
,”
Proc. CIRP
,
14
(
2
), pp.
299
304
.
52.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering
,”
Granul. Matter
,
18
(
2
), p.
21
.
53.
Solomon
,
J.
,
2015
, “
PDE Approaches to Graph Analysis
,” preprint arXiv:1505.00185.
54.
Belkin
,
M.
,
Sun
,
J.
, and
Wang
,
Y.
,
2008
, “
Discrete Laplace Operator on Meshed Surfaces
,”
Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry
,
College Park, MD
,
June 9–11
, pp.
278
287
.
55.
Zhang
,
F.
, and
Hancock
,
E. R.
,
2008
, “
Graph Spectral Image Smoothing Using the Heat Kernel
,”
Pattern Recognit.
,
41
(
11
), pp.
3328
3342
.
56.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17
), pp.
1526
1535
.
57.
Chen
,
Z.
,
Niazi
,
S.
,
Zhang
,
G.
, and
Bobaru
,
F.
,
2017
, “
Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage
,”
Handbook of Nonlocal Continuum Mechanics for Materials and Structures
,
G. Z.
Voyiadjis
, ed.,
Springer International Publishing
,
Cham
, pp.
1
35
.
58.
Sun
,
Y.-S.
, and
Li
,
B.-W.
,
2010
, “
Spectral Collocation Method for Transient Conduction-Radiation Heat Transfer
,”
J. Thermophys. Heat Transf.
,
24
(
4
), pp.
823
832
.
59.
Rahmati
,
A. R.
, and
Niazi
,
S.
,
2012
, “
Simulation of Microflows Using the Lattice Boltzmann Method on Nonuniform Meshes
,”
Nanosci. Technol.
,
3
(
1
), pp.
77
97
.
60.
Kondor
,
R. I.
, and
Lafferty
,
J. D.
,
2002
, “
Diffusion Kernels on Graphs and Other Discrete Input Spaces
,”
Proceedings of the 19th International Conference on Machine Learning.
,
San Francisco, CA
,
July 8–12
, pp.
315
322
.
61.
Saito
,
N.
,
2013
, “
Tutorial: Laplacian Eigenfunctions—Foundations and Applications
,”
University of California, Davis, Graduate University for Advanced Studies, National Institute of Fusion Science
,
Japan
.
62.
Chung
,
F. R. K.
,
1997
,
Spectral Graph Theory
,
American Mathematical Society
,
Providence, RI
.
63.
Bai
,
X.
, and
Hancock
,
E. R.
,
Heat Kernels, Manifolds and Graph Embedding
,
Springer
,
Berlin Heidelberg
, pp.
198
206
.
64.
Goldak
,
J. A.
, and
Akhlaghi
,
M.
,
2005
, “
Computer Simulation of Welding Processes
,”
Computational Welding Mechanics
, pp.
16
69
.
65.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
66.
Cole
,
K. D.
,
Beck
,
J. V.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2010
,
Heat Conduction Using Green’s Functions
,
CRC Press
,
Boca Raton, FL
.
67.
Cole
,
K. D.
,
2018
, “
Parallelepiped with Insulated Boundaries and Piecewise Initial Condition
” EXACT Analytical Conduction Toolbox, Oct. 18www.exact.unl.edu.
68.
Nunes
,
A.
,
1983
, “
An Extended Rosenthal Weld Model
,”
Weld. J.
,
62
(
6
), pp.
165s
170s
.
69.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2018
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6Al-4V
,”
IISE Trans.
,
51
(
2
), pp.
136
152
.
70.
Rubenchik
,
A.
,
Wu
,
S.
,
Mitchell
,
S.
,
Golosker
,
I.
,
LeBlanc
,
M.
, and
Peterson
,
N.
,
2015
, “
Direct Measurements of Temperature-Dependent Laser Absorptivity of Metal Powders
,”
Appl. Opt.
,
54
(
24
), pp.
7230
7233
.
This content is only available via PDF.
You do not currently have access to this content.