A new adaptive disturbance feedforward control strategy of the strip thickness in a hot strip rolling mill with online parameter estimation is proposed. The feedforward control strategy makes use of the measured strip temperature and strip entry thickness. To avoid that these disturbances cause a nonuniform strip exit thickness, the Sims’ roll gap model and a linear mill stand deflection model are used to compute control inputs, which compensate for these disturbances. By minimizing the difference between the expected roll force from the model and the measured roll force, uncertain parameters of the model and also errors of the strip tracking are estimated in real time. The estimated parameters are immediately used in the adaptive feedforward controller. Experimental results of the proposed control approach obtained from an industrial hot strip rolling mill show a significant improvement of the strip thickness accuracy compared to the existing standard controllers. The proposed adaptive feedforward control strategy is now in permanent operation at the considered rolling mill.

References

References
1.
Prinz
,
K.
,
2017
,
Model-Based Control of the Thickness Profile in Hot Strip Rolling
,
Modellierung und Regelung komplexer dynamischer Systeme
, Vol.
37
,
Shaker Verlag
,
Aachen, Germany
.
2.
Prinz
,
K.
,
Steinboeck
,
A.
, and
Kugi
,
A.
,
2018
, “
Optimization-Based Feedforward Control of the Strip Thickness Profile in Hot Strip Rolling
,”
J. Process. Contr.
,
64
, pp.
100
111
.
3.
Prinz
,
K.
,
Schausberger
,
F.
,
Steinboeck
,
A.
, and
Kugi
,
A.
,
2017
, “
Feedforward Control of Lateral Asymmetries in Heavy-Plate Hot Rolling Using Vision-Based Position Estimation
,”
Proceedings of the 20th IFAC World Congress
,
Toulouse, France
, vol.
1
, pp.
11307
11312
.
4.
Ginzburg
,
V.
,
1993
,
High-Quality Steel Rolling
,
CRC Press
,
New York
.
5.
Ferguson
,
I. J.
, and
De Tina
,
R. F.
,
1986
, “
Modern Hot-Strip Mill Thickness Control
,”
IEEE Trans. Ind. Appl.
,
22
(
5
), pp.
934
940
.
6.
Bilkhu
,
T. S.
,
2010
, “
Hot Strip Mill Gauge Control
,”
UKACC International Conference on Control
,
Coventry, UK
, .
7.
Hearns
,
G.
, and
Grimble
,
M. J.
,
2000
, “
Robust Multivariable Control for Hot Strip Mills
,”
Iron Steel Inst. Jpn. (ISIJ) Int.
,
40
(
10
), pp.
995
1002
.
8.
Randall
,
A.
,
Reeve
,
P. J.
, and
MacAlister
,
A. F.
,
1996
, “
Disturbance Attenuation in a Hot Strip Rolling Mill Via Feedforward Adaptive Control
,”
Proceedings of the 13th IFAC World Congress
,
San Francisco, CA
, vol.
29
, pp.
6257
6262
.
9.
Rigler
,
G.
,
Aberl
,
H.
,
Staufer
,
W.
,
Aistleitner
,
K.
, and
Weinberger
,
K.
,
1996
, “
Improved Rolling Mill Automation by Means of Advanced Control Techniques and Dynamic Simulation
,”
IEEE Trans. Ind. Appl.
,
32
(
3
), pp.
599
607
.
10.
Heeg
,
R.
,
Kiefer
,
T.
,
Kugi
,
A.
,
Fichet
,
O.
, and
Irastorza
,
L.
,
2007
, “
Feedforward Control of Plate Thickness in Reversing Plate Mills
,”
IEEE Trans. Ind. Appl.
,
43
(
2
), pp.
386
394
.
11.
Zárate
,
L. E.
, and
Bittencout
,
F. R.
,
2008
, “
Representation and Control of the Cold Rolling Process Through Artificial Neural Networks Via Sensitivity Factors
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
344
362
.
12.
Wehr
,
M.
,
Stockert
,
S.
,
Abel
,
D.
, and
Hirt
,
G.
,
2018
, “
Model Predictive Roll Gap Control in Cold Rolling With Piezoelectric Actuators
,”
Proceedings of the IEEE Conference on Control Technology and Applications (CCTA)
,
Copenhagen, Denmark
, pp.
1377
1382
.
13.
Stephens
,
R. I.
, and
Randall
,
A.
,
1997
, “
On-Line Adaptive Control in the Hot Rolling of Steel
,”
IEE Proc. Contr. Theory Appl.
,
144
(
1
), pp.
15
24
.
14.
Stephens
,
R. I.
,
Bilkhu
,
T. S.
,
MacAlister
,
A. F.
, and
Reeve
,
P. J.
,
1999
, “
Adaptive Control for Industry: Feedforward Control for Metal Rolling Mills
,”
Int. J. Adapt. Contr. Signal Process.
,
13
(
2
), pp.
71
83
.
15.
Wang
,
J. S.
,
Jiang
,
Z. Y.
,
Tieu
,
A. K.
,
Lui
,
X. H.
, and
Wang
,
G. D.
,
2005
, “
Adaptive Calculation of Deformation Resistance Model of Online Process Control in Tandem Cold Mill
,”
J. Mater. Process. Technol.
,
162–163
, pp.
585
590
.
16.
Bai
,
J. L.
,
Li
,
X.
, and
Wang
,
J. S.
,
2013
, “
Model Adaptive Learning in Process Control of Strip Cold Rolling
,” ,
423–426
, pp.
775
779
.
17.
Bu
,
H. N.
,
Yan
,
Z. W.
,
Zhang
,
C. M.
, and
Zhang
,
D. H.
,
2014
, “
Comprehensive Parameters Adaption of Rolling Force Model based on Objective Function in Tandem Cold Mill
,” ,
551
, pp.
296
301
.
18.
Pires
,
C. T. d. A.
,
Ferreira
,
H. C.
, and
Sales
,
R. M.
,
2009
, “
Adaptation for Tandem Cold Mill Models
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3592
3596
.
19.
Atack
,
P. A.
, and
Robinson
,
I. S.
,
1996
, “
Adaptation of Hot Mill Process Models
,”
J. Mater. Process. Technol.
,
60
(
1–4
), pp.
535
542
.
20.
Cuzzola
,
F. A.
,
2008
, “
A Multivariable and Multi-Objective Approach for the Control of Hot-Strip Mills
,”
ASME J. Dyn. Syst. Meas. Contr
,
128
(
4
), pp.
856
868
.
21.
Pittner
,
J.
, and
Simaan
,
M. A.
,
2008
, “
Optimal Control of Tandem Cold Rolling Using a Pointwise Linear Quadratic Technique With Trims
,”
ASME J. Dyn. Syst. Meas. Contr.
130
(
2
), p.
021006
.
22.
Müller
,
M.
,
Steinboeck
,
A.
,
Prinz
,
K.
,
Ettl
,
A.
,
Kugi
,
A.
,
Etzelsdorfer
,
K.
,
Fuchshumer
,
S.
, and
Seyrkammer
,
H.
,
2019
, “
Asymmetric Hydrodynamic Roll Gap Model and Its Experimental Validation
,”
Int. J. Adv. Manuf. Technol.
100
(
9–12
), pp.
3101
3111
.
23.
Müller
,
M.
,
Steinboeck
,
A.
,
Prinz
,
K.
, and
Kugi
,
A.
,
2018
, “
Optimal Parameter Identification for a Hydrodynamic Roll Gap Model in Hot Strip Rolling
,”
Proceedings of the 5th IFAC Workshop on Mining, Mineral and Metal Processing (MMM)
,
Shanghai, China
, vol.
51
, pp.
195
200
.
24.
Hensel
,
A.
, and
Spittel
,
T.
,
1978
,
Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren
,
VEB Deutscher Verlag für Grundstoffindustrie
,
Leipzig, Germany
.
25.
Sellars
,
C.
,
1978
, “
Recrystallization of Metals During Hot Deformation
,”
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci.
,
288
(
1350
), pp.
147
158
.
26.
Sims
,
R.
,
1954
, “
The Calculation of Roll Force and Torque in Hot Rolling Mills
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
191
200
.
27.
Bland
,
D.
, and
Ford
,
H.
,
1948
, “
The Calculation of Roll Force and Torque in Cold Strip Rolling With Tensions
,”
Proc. Inst. Mech. Eng.
,
159
(
1
), pp.
144
163
.
28.
Hosford
,
W. F.
, and
Caddell
,
R. M.
,
2007
,
Metal Forming, Mechanics and Metallurgy
,
Cambridge University Press
,
Cambridge, UK
.
29.
Orowan
,
E.
,
1943
, “
The Calculation of Roll Pressure in Hot and Cold Flat Rolling
,”
Proc. Inst. Mech. Eng.
,
150
(
1
), pp.
140
167
.
30.
Malik
,
A.
, and
Hinton
,
J.
,
2012
, “
Displacement of Multiple, Coupled Timoshenko Beams in Discontinuous Nonlinear Elastic Contact, With Application to Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051009
.
31.
Zhang
,
F.
, and
Malik
,
A.
,
2018
, “
A Roll-Stack Contact Mechanics Model to Predict Strip Profile in Rolling Mills With Asymmetric CVC Roll Crowns
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011008
.
32.
Montmitonnet
,
P.
,
2006
, “
Hot and Cold Strip Rolling Processes
,”
Comp. Methods Appl. Mech. Eng.
,
195
(
48–49
), pp.
6604
6625
.
33.
Pittner
,
J.
, and
Simaan
,
M. A.
,
2011
,
Tandem Cold Metal Rolling Mill Control; Using Practical Advanced Methods
,
Springer
,
London
.
34.
Prinz
,
K.
,
Steinboeck
,
A.
,
Müller
,
M.
,
Ettl
,
A.
, and
Kugi
,
A.
,
2017
, “
Automatic Gauge Control Under Laterally Asymmetric Rolling Conditions Combined With Feedforward
,”
IEEE Trans. Ind. Appl.
,
53
(
3
), pp.
2560
2568
.
35.
Kugi
,
A.
,
Schlacher
,
K.
, and
Novak
,
R.
,
2001
, “
Nonlinear Control in Rolling Mills: A New Perspective
,”
IEEE Trans. Ind. Appl.
,
37
(
5
), pp.
1394
1402
.
36.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
,
1995
, “
Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,”
Int. J. Control
,
61
(
6
), pp.
1327
1361
.
37.
Allgöwer
,
F.
,
Badgwell
,
T. A.
,
Qin
,
J. S.
,
Rawlings
,
J. B.
, and
Wright
,
S. J.
,
1999
,
Nonlinear Predictive Control and Moving Horizon Estimation–An Introductory Overview
, Advances in Control: Highlights of ECC'99,
Springer
,
London
, pp.
391
449
.
38.
Heeg
,
R.
,
2009
,
Modellierung und Dickenregelung beim Warmwalzen
, Modellierung und Regelung komplexer dynamischer Systeme, Vol.
5
,
Shaker Verlag
,
Aachen, Germany
.
This content is only available via PDF.
You do not currently have access to this content.