Prediction of temperature in the tool, chip, and workpiece surface is important to study tool wear, residual stresses in the machined part, and to design cutting tool substrates and coating. This paper presents a finite difference method-based prediction of temperature distribution in the tool, chip, and workpiece surface for transient conditions. The model allows inclusion of anisotropic materials such as coating or different material properties. The energy is created in the primary shear zone where the metal is sheared, the secondary deformation zone where the chip moves on the tool rake face with friction, and the tertiary zone where the flank face of the tool rubs against the finished part surface. The model allows both sticking and sliding friction contact of the moving chip on the rake face of the tool. The distribution of temperature is evaluated by meshing chip, workpiece surface zone, and tool into small discrete elements. The heat transfer among the elements is modeled, and the temperature is predicted at the center of each element. The heat transfer to the tool, workpiece, and chip is iteratively evaluated. The predicted temperature values are compared against the experimental measurements collected with coated tools in turning.

References

References
1.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process Part I: Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.,
42
(
9
), pp.
1715
1752
.
2.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process Part II: Temperature Rise Distribution Due to Frictional Heat Source at the Tool–Chip Interface
,”
Int. J. Mech. Sci.,
43
(
1
), pp.
57
88
.
3.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process Part III: Temperature Rise Distribution Due to the Combined Effects of Shear Plane Heat Source and the Tool–Chip Interface Frictional Heat Source
,”
Int. J. Mech. Sci.,
43
(
1
), pp.
89
107
.
4.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting Tool Temperatures
,”
Trans. ASME
,
76
, pp.
217
231
.
5.
Trigger
,
K.
, and
Chao
,
B.
,
1951
, “
An Analytical Evaluation of Metal Cutting Temperature
,”
Trans. ASME
,
73
, pp.
57
68
.
6.
Stephenson
,
D. A.
, and
Ali
,
A.
,
1992
, “
Tool Temperatures in Interrupted Metal Cutting
,”
J. Eng. Ind.,
114
(
2
), pp.
127
136
.
7.
Liu
,
J.
,
Ren
,
C.
,
Qin
,
X.
, and
Li
,
H.
,
2014
, “
Prediction of Heat Transfer Process in Helical Milling
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
693
705
.
8.
Sato
,
M.
,
Tamura
,
N.
, and
Tanaka
,
H.
,
2011
, “
Temperature Variation in the Cutting Tool in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), pp.
021005
021005
.
9.
Grzesik
,
W.
, and
Nieslony
,
P.
,
2004
, “
Physics Based Modelling of Interface Temperatures in Machining With Multilayer Coated Tools at Moderate Cutting Speeds
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1451
1462
.
10.
Zhang
,
S.
, and
Liu
,
Z.
,
2008
, “
An Analytical Model for Transient Temperature Distributions in Coated Carbide Cutting Tools
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1311
1315
.
11.
Yen
,
Y. C.
,
Jain
,
A.
,
Chigurupati
,
P.
,
Wu
,
W. T.
, and
Altan
,
T.
,
2004
, “
Computer Simulation of Orthogonal Cutting Using a Tool With Multiple Coatings
,”
Mach. Sci. Technol.
,
8
(
2
), pp.
305
326
.
12.
Arrazola
,
P. J.
,
Arriola
,
I.
, and
Davies
,
M. A.
,
2009
, “
Analysis of the Influence of Tool Type, Coatings, and Machinability on the Thermal Fields in Orthogonal Machining of AISI 4140 Steels
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
85
88
.
13.
Nemetz
,
A. W.
,
Daves
,
W.
,
Klünsner
,
T.
,
Ecker
,
W.
,
Teppernegg
,
T.
,
Czettl
,
C.
, and
Krajinović
,
I.
,
2018
, “
FE Temperature- and Residual Stress Prediction in Milling Inserts and Correlation With Experimentally Observed Damage Mechanisms
,”
J. Mater. Process. Technol.
,
256
(
January
), pp.
98
108
.
14.
Thakare
,
A.
, and
Nordgren
,
A.
,
2015
, “
Experimental Study and Modeling of Steady State Temperature Distributions in Coated Cemented Carbide Tools in Turning
,”
Procedia CIRP
,
31
, pp.
234
239
.
15.
Wu
,
H. B.
, and
Zhang
,
S. J.
,
2014
, “
3D FEM Simulation of Milling Process for Titanium Alloy Ti6Al4V
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1319
1326
.
16.
Rapier
,
A. C.
,
1954
, “
A Theoretical Investigation of the Temperature Distribution in the Metal Cutting Process
,”
Br. J. Appl. Phys.,
5
(
11
), pp.
400
405
.
17.
Dutt
,
R. P.
, and
Brewer
,
R. C.
,
1965
, “
On the Theoretical Determination of the Temperature Field in Orthogonal Machining
,”
Int. J. Prod. Res.
,
4
(
2
), pp.
91
114
.
18.
Smith
,
A.
, and
Armarego
,
E.
,
1981
, “
Temperature Prediction in Orthogonal Cutting With a Finite Difference Approach
,”
CIRP Ann. Manuf. Technol.,
30
(
1
), pp.
9
13
.
19.
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2002
, “
Prediction of Tool and Chip Temperature in Continuous and Interrupted Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1011
1022
.
20.
Ulutan
,
D.
,
Lazoglu
,
I.
, and
Dinc
,
C.
,
2009
, “
Three-Dimensional Temperature Predictions in Machining Processes Using Finite Difference Method
,”
J. Mater. Process. Technol.,
209
(
2
), pp.
1111
1121
.
21.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process, Part 3: Cutting Temperature and Crater Wear of Carbide Tool
,”
J. Eng. Ind.,
100
(
2
), pp.
236
243
.
22.
Lazoglu
,
I.
, and
Islam
,
C.
,
2012
, “
Modeling of 3D Temperature Fields for Oblique Machining
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
127
130
.
23.
Islam
,
C.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2016
, “
A Three-Dimensional Transient Thermal Model for Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021003
.
24.
Grzesik
,
W.
,
Bartoszuk
,
M.
, and
Nieslony
,
P.
,
2004
, “
Finite Difference Analysis of the Thermal Behaviour of Coated Tools in Orthogonal Cutting of Steels
,”
Int. J. Mach. Tools Manuf.,
44
(
14
), pp.
1451
1462
.
25.
Bartoszuk
,
M.
, and
Grzesik
,
W.
,
2011
, “
Numerical Prediction of the Interface Temperature Using Updated Finite Difference Approach
,”
Adv. Mater. Res.,
223
, pp.
231
239
.
26.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
27.
Kaymakci
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations
,”
Int. J. Mach. Tools Manuf.,
54
, pp.
34
45
.
28.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2014
, “
Identification of Machining Process Damping Using Output-Only Modal Analysis
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051017
.
29.
Liseikin
,
V. D.
,
2010
,
Grid Generation Methods
,
Springer
,
Berlin
.
30.
Thompson
,
J. E.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
,
1985
,
Numerical Grid Generation Foundations and Applications
,
Elsevier Science Publishing
,
New York
.
31.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics
,
Engineering Education System
,
Wichita, KS
.
32.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,”
Proc. Instn. Mech. Engrs. (General Discussion on Lubrication and Lubricants)
,
2
, pp.
222
235
.
33.
M’Saoubi
,
R.
, and
Chandrasekaran
,
H.
,
2004
, “
Investigation of the Effects of Tool Micro-Geometry and Coating on Tool Temperature During Orthogonal Turning of Quenched and Tempered Steel
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
213
224
.
34.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
35.
Akbar
,
F.
,
Mativenga
,
P.
, and
Sheikh
,
M.
,
2008
, “
An Evaluation of Heat Partition in the High-Speed Turning of AISI/SAE 4140 Steel With Uncoated and TiN-Coated Tools
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
222
(
7
), pp.
759
771
.
36.
Obikawa
,
T.
,
Matsumura
,
T.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1997
, “
Wear Characteristic of Alumina Coated and Alumina Ceramic Tools
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
211
216
.
37.
Lesquois
,
O.
,
Serra
,
J.
,
Kapsa
,
P.
,
Serror
,
S.
, and
Boher
,
C.
,
1996
, “
Degradations in a High-Speed Sliding Contact in Transient Regime
,”
Wear
,
201
(
1–2
), pp.
163
170
.
38.
Özel
,
A.
,
Ucar
,
V.
,
Mimaroglu
,
A.
, and
Calli
,
I.
,
2000
, “
Comparison of the Thermal Stresses Developed in Diamond and Advanced Ceramic Coating Systems Under Thermal Loading
,”
Mater. Des.
,
21
(
5
), pp.
437
440
.
39.
Outeiro
,
J.
,
Dias
,
A.
, and
Jawahir
,
I.
,
2006
, “
On the Effects of Residual Stresses Induced by Coated and Uncoated Cutting Tools With Finite Edge Radii in Turning Operations
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
111
116
.
40.
Abukhshim
,
N.
,
Mativenga
,
P.
, and
Sheikh
,
M.
,
2005
, “
Investigation of Heat Partition in High Speed Turning of High Strength Alloy Steel
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1687
1695
.
41.
Rech
,
J.
,
Arrazola
,
P. J.
,
Claudin
,
C.
,
Courbon
,
C.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2013
, “
Characterisation of Friction and Heat Partition Coefficients at the Tool-Work Material Interface in Cutting
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
79
82
.
42.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge
.
43.
Islam
,
C.
,
2018
,
A Transient Thermal Model for Machining
,
University of British Columbia
,
Vancouver
.
You do not currently have access to this content.