The white layer formed in machining has significant impacts on the friction property, fatigue resistance, and service life of products. This paper presents an analytical model for white layer prediction in orthogonal cutting based on phase transformation mechanism. The effects of stress, elastic, and plastic strain on phase transformation temperature are taken into consideration. A function related to cutting temperature and phase transformation temperature is defined to determine the white layer thickness. The theoretical model is validated by machining AerMet100 steel under different cutting conditions. Optical microscope and X-ray diffraction (XRD) are employed to analyze the microstructures of the white layer. A phase transformation is detected in the white layer region, and the predicted white layer thicknesses are in good agreement with the measured values. In addition, the plastic strain is found to be the major factor that causes a reduction in phase transformation temperature. This work can be further applied to optimize cutting conditions to improve machined surface integrity.

References

References
1.
Poulachon
,
G.
,
Albert
,
A.
,
Schluraff
,
M.
, and
Jawahir
,
I. S.
,
2005
, “
An Experimental Investigation of Workpiece Material Microstructure Effects on White Layer Formation in PCBN Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
211
218
.
2.
Hosseini
,
S. B.
,
Klement
,
U.
,
Yao
,
Y.
, and
Ryttberg
,
K.
,
2015
, “
Formation Mechanisms of White Layers Induced by Hard Turning of AISI 52100 Steel
,”
Acta Mater.
,
89
, pp.
258
267
.
3.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1999
, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1863
1881
.
4.
Madopothula
,
U.
,
Nimmagadda
,
R. B.
, and
Lakshmanan
,
V.
,
2018
, “
Assessment of White Layer in Hardened AISI 52100 Steel and its Prediction Using Grinding Power
,”
Mach. Sci. Technol.
,
22
(
2
), pp.
299
319
.
5.
Umbrello
,
D.
, and
Rotella
,
G.
,
2012
, “
Experimental Analysis of Mechanisms Related to White Layer Formation During Hard Turning of AISI 52100 Bearing Steel
,”
Mater. Sci. Technol.
,
28
(
2
), pp.
205
212
.
6.
Kundrák
,
J.
,
Gácsi
,
Z.
,
Gyáni
,
K.
,
Bana
,
V.
, and
Tomolya
,
G.
,
2012
, “
X-Ray Diffraction Investigation of White Layer Development in Hard-Turned Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
457
469
.
7.
Zhang
,
X. M.
,
Huang
,
X. D.
,
Chen
,
L.
,
Leopold
,
J.
, and
Ding
,
H.
,
2017
, “
Effects of Sequential Cuts on White Layer Formation and Retained Austenite Content in Hard Turning of AISI52100 Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
064502
.
8.
Griffiths
,
B. J.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
.
9.
Han
,
S.
,
Melkote
,
S. N.
,
Haluska
,
M. S.
, and
Watkins
,
T. R.
,
2008
, “
White Layer Formation due to Phase Transformation in Orthogonal Machining of AISI 1045 Annealed Steel
,”
Mater. Sci. Eng. A
,
488
(
1–2
), pp.
195
204
.
10.
Hosseini
,
S. B.
,
Thuvander
,
M.
,
Klement
,
U.
,
Sundell
,
G.
, and
Ryttberg
,
K.
,
2017
, “
Atomic-Scale Investigation of Carbon Atom Migration in Surface Induced White Layers in High-Carbon Medium Chromium (AISI 52100) Bearing Steel
,”
Acta Mater.
,
130
, pp.
155
163
.
11.
Du
,
J.
,
Liu
,
Z.
, and
Lv
,
S.
,
2014
, “
Deformation-Phase Transformation Coupling Mechanism of White Layer Formation in High Speed Machining of FGH95 Ni-Based Superalloy
,”
Appl. Surf. Sci.
,
292
(
3
), pp.
197
203
.
12.
Chou
,
Y. K.
, and
Song
,
H.
,
2005
, “
Thermal Modeling for White Layer Predictions in Finish Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
481
495
.
13.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.
14.
Duan
,
C.
,
Kong
,
W.
,
Hao
,
Q.
, and
Zhou
,
F.
,
2013
, “
Modeling of White Layer Thickness in High Speed Machining of Hardened Steel Based on Phase Transformation Mechanism
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
59
70
.
15.
Arfaoui
,
S.
,
Zemzemi
,
F.
, and
Tourki
,
Z.
,
2018
, “
Relationship Between Cutting Process Parameters and White Layer Thickness in Orthogonal Cutting
,”
Mater. Manuf. Process.
,
33
(
6
), pp.
661
669
.
16.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2003
, “
Modelling of the Cutting Temperature Distribution Under the Tool Flank Wear Effect
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
217
(
11
), pp.
1195
1208
.
17.
Verma
,
G. C.
,
Pandey
,
P. M.
, and
Dixit
,
U. S.
,
2018
, “
Estimation of Workpiece-Temperature During Ultrasonic-Vibration Assisted Milling Considering Acoustic Softening
,”
Int. J. Mech. Sci.
,
140
, pp.
547
556
.
18.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process: Part I—Temperature Rise Distribution due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
.
19.
Waldorf
,
D. J.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
20.
Lin
,
S.
,
Peng
,
F.
,
Wen
,
J.
,
Liu
,
Y.
, and
Yan
,
R.
,
2013
, “
An Investigation of Workpiece Temperature Variation in End Milling Considering Flank Rubbing Effect
,”
Int. J. Mach. Tools Manuf.
,
73
(
7
), pp.
71
86
.
21.
Zeng
,
H. H.
,
Yan
,
R.
,
Peng
,
F. Y.
,
Zhou
,
L.
, and
Deng
,
B.
,
2017
, “
An Investigation of Residual Stresses in Micro-End-Milling Considering Sequential Cuts Effect
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3619
3634
.
22.
Ulutan
,
D.
,
Alaca
,
B. E.
, and
Lazoglu
,
I.
,
2007
, “
Analytical Modelling of Residual Stresses in Machining
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
77
87
.
23.
Zhang
,
X. M.
,
Chen
,
L.
, and
Ding
,
H.
,
2016
, “
Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074502
.
24.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
You do not currently have access to this content.