Dynamic milling forces have been widely used to monitor the condition of the milling process. However, it is very difficult to measure milling forces directly in operation, particularly in the industrial scene. In this paper, a dynamic force identification method in time domain, conjugate gradient least square (CGLS), is employed for reconstructing the time history of milling forces using acceleration signals in the peripheral milling process. CGLS is adopted for force identification because of its high accuracy and efficiency, which handles the ill-conditioned matrix well. In the milling process, the tool with high-speed rotation has different transfer functions between tool nose and accelerometers at different angular positions. Based on this fact, the averaged transfer functions are employed to reduce the error amplification of regularization processing for milling force identification. Moreover, in order to eliminate the effect of idling and high-frequency components on identification accuracy, the Butterworth band-pass filter is adopted for acceleration signals preprocessing. Finally, the proposed method is validated by milling tests under different cutting parameters. Experimental results demonstrate that the identified and measured milling forces are in good agreement on the whole time domain, which verifies the effectiveness and generalization of the indirect method for milling force measuring. In addition, the Tikhonov regularization method is also implemented for comparison, which shows that CGLS has higher accuracy and efficiency.

References

References
1.
Cao
,
H.
,
Zhang
,
X.
, and
Chen
,
X.
,
2017
, “
The Concept and Progress of Intelligent Spindles: A Review
,”
Int. J. Mach. Tools Manuf.
,
112
, pp.
21
52
.
2.
Du
,
R.
,
Elbestawi
,
M. A.
, and
Ullagaddi
,
B. C.
,
1992
, “
Chatter Detection in Milling Based on the Probability Distribution of Cutting Force Signal
,”
Mech. Syst. Signal Process.
,
6
(
4
), pp.
345
362
.
3.
Chin
,
D. H.
, and
Yoon
,
M. C.
,
2005
, “
Cutting Force Monitoring in the Endmilling Operation for Chatter Detection
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
6
), pp.
455
465
.
4.
Kuljanic
,
E.
,
Totis
,
G.
, and
Sortino
,
M.
,
2009
, “
Development of an Intelligent Multisensor Chatter Detection System in Milling
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1704
1718
.
5.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
Y.
,
Cao
,
H.
, and
Chen
,
X.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression Via Piezoelectric Stack Actuators
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
53
66
.
6.
Wang
,
C.
,
Zhang
,
X.
,
Cao
,
H.
,
Chen
,
X.
, and
Xiang
,
J.
,
2017
, “
Milling Stability Prediction and Adaptive Chatter Suppression Considering Helix Angle and Bending
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
1
13
.
7.
Feng
,
J.
,
Sun
,
Z.
,
Jiang
,
Z.
, and
Yang
,
L.
,
2016
, “
Identification of Chatter in Milling of Ti-6Al-4V Titanium Alloy Thin-Walled Workpieces Based on Cutting Force Signals and Surface Topography
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1909
1920
.
8.
Wan
,
M.
,
Yin
,
W.
,
Zhang
,
W. H.
, and
Liu
,
H.
,
2017
, “
Improved Inverse Filter for the Correction of Distorted Measured Cutting Forces
,”
Int. J. Mech. Sci.
,
120
, pp.
276
285
.
9.
Wan
,
M.
,
Yuan
,
H.
,
Feng
,
J.
,
Zhang
,
W.-H.
, and
Yin
,
W.
,
2017
, “
Industry-Oriented Method for Measuring the Cutting Forces Based on the Deflections of Tool Shank
,”
Int. J. Mech. Sci.
,
130
, pp.
315
323
.
10.
Albrecht
,
A.
,
Park
,
S. S.
,
Altintas
,
Y.
, and
Pritschow
,
G. U. N.
,
2005
, “
High Frequency Bandwidth Cutting Force Measurement in Milling Using Capacitance Displacement Sensors
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
993
1008
.
11.
Jianmin
,
Z.
,
Jian
,
W.
,
Tongchao
,
Z.
, and
Xiaoru
,
L.
,
2014
, “
Dynamic Milling Force Measuring Method Based on Cutting Tool Vibration Displacement
,”
Chin. J. Sci. Instrum.
,
35
(
12
), pp.
2772
2782
.
12.
Albertelli
,
P.
,
Goletti
,
M.
,
Torta
,
M.
,
Salehi
,
M.
, and
Monno
,
M.
,
2016
, “
Model-Based Broadband Estimation of Cutting Forces and Tool Vibration in Milling Through in-Process Indirect Multiple-Sensors Measurements
,”
Int. J. Adv. Manuf. Technol.
,
82
(
5–8
), pp.
779
796
.
13.
Sarhan
,
A. A. D.
,
Matsubara
,
A.
,
Sugihara
,
M.
,
Saraie
,
H.
,
Ibaraki
,
S.
, and
Kakino
,
Y.
,
2006
, “
Monitoring Method of Cutting Force by Using Additional Spindle Sensors
,”
JSME Int. J., Ser. C
,
49
(
2
), pp.
307
315
.
14.
Yamada
,
Y.
,
Yamato
,
S.
, and
Kakinuma
,
Y.
,
2017
, “
Mode Decoupled and Sensorless Cutting Force Monitoring Based on Multi-Encoder
,”
Int. J. Adv. Manuf. Technol.
,
92
, pp.
1
13
.
15.
Yamada
,
Y.
, and
Kakinuma
,
Y.
,
2016
, “
Mode Decoupled Cutting Force Monitoring by Applying Multi Encoder Based Disturbance Observer
,”
Procedia CIRP
,
57
, pp.
643
648
.
16.
Yamada
,
Y.
, and
Kakinuma
,
Y.
,
2016
, “
Sensorless Cutting Force Estimation for Full-Closed Controlled Ball-Screw-Driven Stage
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3337
3348
.
17.
Karabay
,
S.
,
2007
, “
Design Criteria for Electro-Mechanical Transducers and Arrangement for Measurement of Strains Due to Metal Cutting Forces Acting on Dynamometers
,”
Mater. Des.
,
28
(
2
), pp.
496
506
.
18.
Rizal
,
M.
,
Ghani
,
J. A.
,
Nuawi
,
M. Z.
, and
Che
,
H. C. H.
,
2015
, “
Development and Testing of an Integrated Rotating Dynamometer on Tool Holder for Milling Process
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
559
576
.
19.
Tuysuz
,
T.
,
2016
, “
Prediction of Cutting Forces at the Tool tip Using Drive Current for Five-Axis Machines
,” Ph. D. thesis,
University of British Columbia
,
British Columbia
.
20.
Kim
,
T.-Y.
, and
Kim
,
J.
,
1996
, “
Adaptive Cutting Force Control for a Machining Center by Using Indirect Cutting Force Measurements
,”
Inter. J. Mach. Tools Manuf.
,
36
(
8
), pp.
925
937
.
21.
Castro
,
L. R.
,
Viéville
,
P.
, and
Lipinski
,
P.
,
2006
, “
Correction of Dynamic Effects on Force Measurements Made With Piezoelectric Dynamometers
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1707
1715
.
22.
Pawełko
,
P.
,
Pawełko
,
B.
, and
Berczyński
,
S.
,
2013
, “
Estimation of Cutting Force Model Coefficients With Regularized Inverse Problem
,”
Adv. Manuf. Sci. Technol.
,
37
(
2
), pp.
5
21
.
23.
Powalka
,
B.
,
2008
, “
Identification of Machining Force Model Parameters From Acceleration Measurements
,”
Int. J. Manuf. Res.
,
3
(
3
), pp.
265
284
.
24.
Lu
,
L.
,
Qiao
,
B.
,
Zhang
,
X.
, and
Chen
,
X.
,
2016
, “
Application of Conjugate Gradient Least Squares Iteration Regularization Algorithm in Impact Load Identification
,”
J. Vib. Shock
,
35
(
22
), pp.
176
182
.
25.
Qiao
,
B.
,
Zhu
,
M.
,
Liu
,
J.
,
Zhao
,
Z.
, and
Chen
,
X.
,
2019
, “
Group Sparse Regularization for Impact Force Identification in Time Domain
,”
J. Sound Vib.
,
445
, pp.
44
63
.
26.
Qiao
,
B.
,
Zhang
,
X.
,
Gao
,
J.
,
Liu
,
R.
, and
Chen
,
X.
,
2016
, “
Sparse Deconvolution for the Large-Scale Ill-Posed Inverse Problem of Impact Force Reconstruction
,”
Mech. Syst. Signal Process.
,
83
, pp.
93
115
.
27.
Qiao
,
B.
,
Zhang
,
X.
,
Wang
,
C.
,
Zhang
,
H.
, and
Chen
,
X.
,
2016
, “
Sparse Regularization for Force Identification Using Dictionaries
,”
J. Sound Vib.
,
368
, pp.
71
86
.
28.
Aster
,
R. C.
,
Borchers
,
B.
, and
Thurber
,
C. H.
,
2013
,
Parameter Estimation and Inverse Problems
,
2nd ed.
,
Academic Press
,
New York/London/Orlando
.
29.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, England/London/New York
.
30.
Rao
,
S. S.
, and
Yap
,
F. F.
,
2011
,
Mechanical Vibrations
,
Prentice Hall Upper Saddle River
,
Englewood Cliffs, NJ
.
31.
Qiao
,
B.
,
Chen
,
X.
,
Xue
,
X.
,
Luo
,
X.
, and
Liu
,
R.
,
2015
, “
The Application of Cubic B-Spline Collocation Method in Impact Force Identification
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
413
427
.
32.
Qiao
,
B.
,
Zhang
,
X.
,
Luo
,
X.
,
Chen
,
X.
,
Qin
,
Y.
,
Zhao
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
, and
Wang
,
P.
,
2015
, “
A Force Identification Method Using Cubic B-Spline Scaling Functions A Novel Dynamometer for Monitoring Milling Process
,”
J. Sound Vib.
,
337
, pp.
28
44
.
33.
Hanke
,
M.
,
1995
,
Conjugate Gradient Type Methods for Ill-Posed Problems, Longman Scientific and Technical
,
Wiley
,
New York
.
34.
Hansen
,
P. C.
,
1998
, “
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
,”
Am. Math. Monthly
,
4
(
5
), pp.
491
491
.
35.
Haykin
,
S.
, and
Van Veen
,
B.
,
2007
,
Signals and Systems
,
Wiley
,
New York
.
36.
Hsu
,
H. P.
, and
Ranjan
,
R.
,
2014
,
Signals and Systems
,
McGraw-Hill Education
,
New York
.
You do not currently have access to this content.