High temperature, short welding time, and low relative motion generate high bond quality in ultrasonic metal welding (USMW). Friction is considered to be the main heat source during USMW. Hence, a comprehensive and accurate understanding of friction heating has become particularly valuable for designing USMW processes and devices. However, stick, slip, and separation states may appear alternately in the welding zone between superimposed workpieces during USMW vibrations; hence, a strong nonlinear process is created. Furthermore, the structural dynamics and the heat transfer are highly coupled because material properties depend on temperature. In this research, we propose a fast and accurate numerical methodology to calculate the friction heating through a multiphysical approach integrating a nonlinear contact model, a nonlinear structural dynamics model, and a thermal model. The harmonic balance method and the finite element method are utilized to accelerate the simulation. Several experiments were performed with aluminum and copper workpieces under different clamping forces and vibration amplitudes to confirm the presented numerical method, resulting in a good match.

References

References
1.
Neppiras
,
E. A.
,
1965
, “
Ultrasonic Welding of Metals
,”
Ultrasonics
,
3
(
3
), pp.
128
135
.
2.
Bakavos
,
D.
, and
Prangnell
,
P. B.
,
2010
, “
Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet
,”
Mater. Sci. Eng. A
,
527
(
23
), pp.
6320
6334
.
3.
Watanabe
,
T.
,
Sakuyama
,
H.
, and
Yanagisawa
,
A.
,
2009
, “
Ultrasonic Welding Between Mild Steel Sheet and Al–Mg Alloy Sheet
,”
J. Mater. Process. Technol.
,
209
(
15
16
), pp.
5475
5480
.
4.
Wagner
,
G.
,
Balle
,
F.
, and
Eifler
,
D.
,
2013
, “
Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers
,”
Adv. Eng. Mater.
,
15
(
9
), pp.
792
803
.
5.
Kim
,
T. H.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann.
,
60
(
1
), pp.
17
20
.
6.
Lee
,
D.
, and
Cai
,
W.
,
2017
, “
The Effect of Horn Knurl Geometry on Battery Tab Ultrasonic Welding Quality: 2D Finite Element Simulations
,”
J. Manuf. Process.
,
28
(
3
), pp.
428
441
.
7.
Haddadi
,
F.
,
2015
, “
Rapid Intermetallic Growth Under High Strain Rate Deformation During High Power Ultrasonic Spot Welding of Aluminium to Steel
,”
Mater. Des.
,
66
, pp.
459
472
.
8.
Lu
,
Y.
,
Song
,
H.
,
Taber
,
G. A.
,
Foster
,
D. R.
,
Daehn
,
G. S.
, and
Zhang
,
W.
,
2016
, “
In-Situ Measurement of Relative Motion During Ultrasonic Spot Welding of Aluminum Alloy Using Photonic Doppler Velocimetry
,”
J. Mater. Process. Technol.
,
231
, pp.
431
440
.
9.
Zhang
,
C. S.
, and
Li
,
L.
,
2009
, “
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanism
,”
Metall. Mater. Trans. B
,
40
(
2
), pp.
196
207
.
10.
Lee
,
D.
,
Kannatey-Asibu
,
E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
11.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding—an FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1143
1150
.
12.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2009
, “
Theoretical and FE Analysis of Ultrasonic Welding of Aluminum Alloy 3003
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041007
.
13.
Li
,
H.
,
Choi
,
H.
,
Ma
,
C.
,
Zhao
,
J.
,
Jiang
,
H.
,
Cai
,
W.
, and
Li
,
X.
,
2013
, “
Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Microsensors
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051015
.
14.
Liu
,
Z.
,
Kannatey-Asibu
,
E.
,
Wang
,
Y.
, and
Epureanu
,
B. I.
,
2018
, “
Nonlinear Dynamic Analysis of Ultrasonic Metal Welding Using a Harmonic Balance Method
,”
Proc. CIRP
,
76
, pp.
89
93
.
15.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Adaptive Microslip Projection for Reduction of Frictional and Contact Nonlinearities in Shrouded Blisks
,”
ASME J. Comput. Nonlin. Dyn.
,
11
(
4
), p.
041016
.
16.
Yang
,
B. D.
,
Chu
,
M. L.
, and
Menq
,
C. H.
,
1998
, “
Stick-Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
.
17.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.
18.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
, “
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,”
Numerical Analysis Theory and Application
,
J.
Awrejcewicz
, ed.,
InTech
,
Rijeka, Croatia
.
19.
Wang
,
Y.
, and
Liu
,
Z.
,
2016
, “
Numerical Scheme for Period-m Motion of Second-Order Nonlinear Dynamical Systems Based on Generalized Harmonic Balance Method
,”
Nonlin. Dyn.
,
84
(
1
), pp.
323
340
.
20.
Liu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Periodicity and Stability in Transverse Motion of a Nonlinear Rotor-Bearing System Using Generalized Harmonic Balance Method
,”
ASME J. Eng. Gas Turb. Power
,
139
(
2
), p.
022502
.
21.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
22.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turb. Power
,
132
(
8
), p.
082501
.
23.
Luo
,
Y.
,
Chung
,
H.
,
Cai
,
W.
,
Rinker
,
T.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
, and
Abell
,
J.
,
2018
, “
Joint Formation in Multilayered Ultrasonic Welding of Ni-Coated Cu and the Effect of Preheating
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111003
.
You do not currently have access to this content.