The machining process induced damping caused by the indentation of the cutting edge into the wavy cut surface greatly affects the process stability in low-speed machining of thermally resistant alloys and hardened steel, which have high-frequency vibration marks packed with short wavelengths. This paper presents an analytical model to predict the process damping forces and chatter stability in low-speed machining operations. The indentation boundaries are evaluated using the cutting edge geometry and the undulated surface waveform. Contact pressure due to the interference of the rounded and straight sections of the rigid cutting edge with the elastic-plastic work material is analytically estimated at discrete positions along the wavy surface. The overall contact pressure is obtained as a function of the cutting edge geometry, vibration frequency and amplitude, and the material properties of the workpiece. The resulting specific indentation force is evaluated by integrating the overall pressure along the contact length. Then, the process damping force is linearized by an equivalent specific viscous damping, which is used in the frequency domain chatter stability analysis. The newly proposed analytical process damping model is experimentally validated by predicting the chatter stability in orthogonal turning, end milling, and five-axis milling of flexible blades. It is shown that the proposed model can replace currently used empirical models, which require extensive experimental calibration approach or computationally prohibitive finite elements based numerical simulation methods.

References

References
1.
Huang
,
C. Y.
, and
Wang
,
J. J. J.
,
2006
, “
Mechanistic Modeling of Process Damping in Peripheral Milling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
12
20
.
2.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
,
53
(
2
), pp.
619
642
.
3.
Sisson
,
T. R.
, and
Kegg
,
R. L.
,
1969
, “
An Explanation of Low-Speed Chatter Effects
,”
J. Eng. Ind.
,
91
(
4
), pp.
951
958
.
4.
Wu
,
D. W.
,
1988
, “
Application of a Comprehensive Dynamic Cutting Force Model to Orthogonal Wave-Generating Processes
,”
Int. J. Mech. Sci.
,
30
(
8
), pp.
581
600
.
5.
Abrari
,
F.
,
Elbestawi
,
M. A.
, and
Spence
,
A. D.
,
1998
, “
On the Dynamics of Ball End Milling: Modeling of Cutting Forces and Stability Analysis
,”
Int. J. Mach. Tools Manuf.
,
38
(
3
), pp.
215
237
.
6.
Lee
,
B. Y.
,
Tarng
,
Y. S.
, and
Ma
,
S. C.
,
1995
, “
Modeling of the Process Damping Force in Chatter Vibration
,”
Int. J. Mach. Tools Manuf.
,
35
(
7
), pp.
951
962
.
7.
Shawky
,
A. M.
, and
Elbestawi
,
M. A.
,
1997
, “
An Enhanced Dynamic Model in Turning Including the Effect of Ploughing Forces
,”
ASME J. Manuf. Sci. Eng.
,
119
(
1
), pp.
10
20
.
8.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
,
1998
, “
Chatter Stability of a Slender Cutting Tool in Turning With Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
315
327
.
9.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2010
, “
Experimental Investigation of Process Damping Nonlinearity in Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
1006
1014
.
10.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
.
11.
Sellmeier
,
V.
, and
Denkena
,
B.
,
2012
, “
High Speed Process Damping in Milling
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
1
), pp.
8
19
.
12.
Budak
,
E.
, and
Tunc
,
L. T.
,
2009
, “
A New Method for Identification and Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051019
.
13.
Budak
,
E.
, and
Tunc
,
L. T.
,
2010
, “
Identification and Modeling of Process Damping in Turning and Milling Using a New Approach
,”
CIRP Ann.
,
59
(
1
), pp.
403
408
.
14.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2011
, “
Analytical Stability Lobes Including Nonlinear Process Damping Effect on Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
296
308
.
15.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2014
, “
Identification of Machining Process Damping Using Output-Only Modal Analysis
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051017
.
16.
Wan
,
M.
,
Feng
,
J.
,
Ma
,
Y.-C.
, and
Zhang
,
W.-H.
,
2017
, “
Identification of Milling Process Damping Using Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
120
131
.
17.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
.
18.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, England
.
19.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, England
.
20.
de Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
de Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
39
54
.
21.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2005
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.
22.
Malekian
,
M.
,
Mostofa
,
M. G.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
.
23.
Rezaei
,
H.
,
Sadeghi
,
M. H.
, and
Budak
,
E.
,
2018
, “
Determination of Minimum Uncut Chip Thickness Under Various Machining Conditions During Micro-Milling of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5
), pp.
1617
1634
.
24.
Woon
,
K. S.
,
Rahman
,
M.
,
Neo
,
K. S.
, and
Liu
,
K.
,
2008
, “
The Effect of Tool Edge Radius on The Contact Phenomenon of Tool-Based Micromachining
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1395
1407
.
25.
Yen
,
Y.-C.
,
Jain
,
A.
, and
Altan
,
T.
,
2004
, “
A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
72
81
.
26.
Elbestawi
,
M. A.
,
Ismail
,
F.
, and
Ullagaddi
,
B. C.
,
1994
, “
Modelling Machining Dynamics Including Damping in the Tool-Workpiece Interface
,”
J. Eng. Ind.
,
116
(
4
), pp.
435
439
.
27.
Adams
,
G. G.
, and
Nosonovsky
,
M.
,
2000
, “
Contact Modeling—Forces
,”
Tribol. Int.
,
33
(
5
), pp.
431
442
.
28.
Carlsson
,
S.
,
Biwa
,
S.
, and
Larsson
,
P. L.
,
2000
, “
On Frictional Effects at Inelastic Contact Between Spherical Bodies
,”
Int. J. Mech. Sci.
,
42
(
1
), pp.
107
128
.
29.
Hills
,
D. A.
,
Nowell
,
D.
, and
Sackfield
,
A.
,
1993
,
Mechanics of Elastic Contacts
,
Butterworth-Heinemann
,
Great Britain
.
30.
Goryacheva
,
I. G.
,
Murthy
,
H.
, and
Farris
,
T. N.
,
2002
, “
Contact Problem With Partial Slip for the Inclined Punch With Rounded Edges
,”
Int. J. Fatigue
,
24
(
11
), pp.
1191
1201
.
31.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H.-Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.
32.
Mason
,
J. C.
, and
Handscomb
,
D. C.
,
2003
,
Chebyshev Polynomials
,
CRC Press LLC
,
Boca Raton, FL
.
33.
Yu
,
W.
, and
Blanchard
,
J. P.
,
1996
, “
An Elastic-Plastic Indentation Model and its Solutions
,”
J. Mater. Res.
,
11
(
9
), pp.
2358
2367
.
34.
Johnson
,
K. L.
,
1970
, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
18
(
2
), pp.
115
126
.
35.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
36.
Altintas
,
Y.
,
2012
,
Manufacturing Automation
,
Cambridge University Press
,
New York, NY
.
37.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.
38.
Altintas
,
Y.
,
2001
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J. C Mech. Syst.
,
44
(
3
), pp.
717
723
.
39.
Islam
,
C.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2015
, “
A Three-Dimensional Transient Thermal Model for Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021003
.
40.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
41.
Ahmadi
,
K.
,
2011
, “
Machining Chatter in Flank Milling and Investigation of Process Damping in Surface Generation
,”
PhD Thesis
,
The University of Waterloo
,
Waterloo, ON, Canada
.
You do not currently have access to this content.