In mass customization, a manufacturing line is required to be kept in reliable operation to handle product demand volatility and potential machine degradations. Recent advances in data acquisition and processing allow for effective maintenance scheduling. This paper presents a systematic framework that integrates a sensor-driven prognostic method and an opportunistic maintenance policy. The prognostic method uses degradation signals of each individual machine to predict and update its time-to-failure (TTF) distributions in real time. Then, system-level opportunistic maintenance optimizations are dynamically made according to real-time TTF distributions and variable product orders. The online analytics framework is demonstrated through the case study based on the collected reliability information from a production line of engine crankshaft. The results can effectively prove that the real-time degradation updating and the opportunistic maintenance scheduling can efficiently reduce maintenance cost, avoid system breakdown, and ensure product quality. Furthermore, this framework can be applied not only in an automobile line but also for a broader range of manufacturing lines in mass customization.

References

References
1.
Hu
,
S. J.
,
2013
, “
Evolving Paradigms of Manufacturing: From Mass Production to Mass Customization and Personalization
,”
Proc. CIRP
,
7
, pp.
3
8
.
2.
Yao
,
J.
, and
Deng
,
Z.
,
2015
, “
Scheduling Optimization in the Mass Customization of Global Producer Services
,”
IEEE Trans. Eng. Manage.
,
62
(
4
), pp.
591
603
.
3.
Jin
,
X.
, and
Ni
,
J.
,
2013
, “
Joint Production and Preventive Maintenance Strategy for Manufacturing Systems With Stochastic Demand
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031016
.
4.
Tao
,
X.
,
Xia
,
T.
, and
Xi
,
L.
,
2017
, “
Dynamic Opportunistic Maintenance Scheduling for Series Systems Based on Theory of Constraints (TOC)-VLLTW Methodology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021009
.
5.
Xia
,
T.
,
Xi
,
L.
,
Pan
,
E.
,
Fang
,
X.
, and
Gebraeel
,
N.
,
2017
, “
Lease-Oriented Opportunistic Maintenance for Multi-Unit Leased Systems Under Product-Service Paradigm
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071005
.
6.
Djurdjanovic
,
D.
,
Mears
,
L.
,
Niaki
,
F. A.
,
Haq
,
A. U.
, and
Li
,
L.
,
2018
, “
State of the Art Review on Process, System, and Operations Control in Modern Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061010
.
7.
Glasse
,
B.
, and
Fritsching
,
U.
,
2017
, “
Continuous Monitoring of Metal Working Fluid Quality in Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
044501
.
8.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Audio-Based Tool Condition Monitoring in Milling of the Workpiece Material With the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111006
.
9.
Shao
,
Y.
,
Yin
,
Y.
,
Du
,
S.
,
Xia
,
T.
, and
Xi
,
L.
,
2018
, “
Leakage Monitoring in Static Sealing Interface Based on Three Dimensional Surface Topography Indicator
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101003
.
10.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.
11.
Hassan
,
M.
,
Sadek
,
A.
,
Attia
,
M. H.
, and
Thomson
,
V.
,
2018
, “
A Novel Generalized Approach for Real-Time Tool Condition Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021010
.
12.
Pasqualetti
,
F.
,
Dörfler
,
F.
, and
Bullo
,
F.
,
2013
, “
Attack Detection and Identification in Cyber-Physical Systems
,”
IEEE Trans. Autom. Contr.
,
58
(
11
), pp.
2715
2729
.
13.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H. A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
14.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Lee
,
J.
,
2012
, “
Dynamic Maintenance Decision-Making for Series-Parallel Manufacturing System Based on MAM-MTW Methodology
,”
Eur. J. Oper. Res.
,
221
(
1
), pp.
231
240
.
15.
Ni
,
J.
,
Gu
,
X.
, and
Jin
,
X.
,
2015
, “
Preventive Maintenance Opportunities for Large Production Systems
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
447
450
.
16.
Xia
,
T.
,
Xi
,
L.
,
Du
,
S.
,
Xiao
,
L.
, and
Pan
,
E.
,
2018
, “
Energy-Oriented Maintenance Decision-Making for Sustainable Manufacturing Based on Energy Saving Window
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051001
.
17.
Jiao
,
J.
,
2012
, “
Product Platform Flexibility Planning by Hybrid Real Options Analysis
,”
IIE Trans.
,
44
(
6
), pp.
431
445
.
18.
Fogliatto
,
F. S.
,
Da Silveira
,
G. J. C.
, and
Borenstein
,
D.
,
2012
, “
The Mass Customization Decade: An Updated Review of the Literature
,”
Int. J. Prod. Econ.
,
138
(
1
), pp.
14
25
.
19.
Zhong
,
R. Y.
,
Dai
,
Q. Y.
,
Qu
,
T.
,
Hu
,
G. J.
, and
Huang
,
G. Q.
,
2013
, “
RFID-Enabled Real-Time Manufacturing Execution System for Mass-Customization Production
,”
Robot. Comput. Int. Manuf.
,
29
(
2
), pp.
283
292
.
20.
Tian
,
Z.
,
Kouvelis
,
P.
, and
Munson
,
C. L.
,
2015
, “
Understanding and Managing Product Line Complexity: Applying Sensitivity Analysis to a Large-Scale MILP Model to Price and Schedule New Customer Orders
,”
IIE Trans.
,
47
(
4
), pp.
307
328
.
21.
Lee
,
J. Y.
, and
Kim
,
Y. D.
,
2012
, “
Minimizing the Number of Tardy Jobs in a Single-Machine Scheduling Problem With Periodic Maintenance
,”
Comput. Oper. Res.
,
39
(
9
), pp.
2196
2205
.
22.
Benmansour
,
R.
,
Allaoui
,
H.
,
Artiba
,
A.
, and
Hanafi
,
S.
,
2014
, “
Minimizing the Weighted Sum of Maximum Earliness and Maximum Tardiness Costs on a Single Machine With Periodic Preventive Maintenance
,”
Comput. Oper. Res.
,
47
, pp.
106
113
.
23.
Ying
,
K. C.
,
Lu
,
C. C.
, and
Chen
,
J. C.
,
2016
, “
Exact Algorithms for Single-Machine Scheduling Problems With a Variable Maintenance
,”
Comput. Ind. Eng.
,
98
, pp.
427
433
.
24.
Chen
,
W. J.
,
2009
, “
Minimizing Number of Tardy Jobs on a Single Machine Subject to Periodic Maintenance
,”
Omega
,
37
(
3
), pp.
591
599
.
25.
Liu
,
M.
,
Wang
,
S.
,
Chu
,
C.
, and
Chu
,
F.
,
2016
, “
An Improved Exact Algorithm for Single-Machine Scheduling to Minimise the Number of Tardy Jobs With Periodic Maintenance
,”
Int. J. Prod. Res.
,
54
(
12
), pp.
3591
3602
.
26.
Liu
,
X.
,
Li
,
J.
,
Al-Khalifa
,
K. N.
,
Hamouda
,
A. S.
,
Coit
,
D. W.
, and
Elsayed
,
E. A.
,
2013
, “
Condition-Based Maintenance for Continuously Monitored Degrading Systems With Multiple Failure Modes
,”
IIE Trans.
,
45
(
4
), pp.
422
435
.
27.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
, and
Ni
,
J.
,
2015
, “
Production-Driven Opportunistic Maintenance for Batch Production Based on MAM-APB Scheduling
,”
Eur. J. Oper. Res.
,
240
(
3
), pp.
781
790
.
28.
Herrmann
,
J. W.
,
2012
, “
Finding Optimally Balanced Words for Production Planning and Maintenance Scheduling
,”
IIE Trans.
,
44
(
3
), pp.
215
229
.
29.
Fitouhi
,
M. C.
, and
Nourelfath
,
M.
,
2014
, “
Integrating Noncyclical Preventive Maintenance Scheduling and Production Planning for Multi-State Systems
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
175
186
.
30.
Dababneh
,
F.
,
Li
,
L.
,
Shah
,
R.
, and
Haefke
,
C.
,
2018
, “
Demand Response-Driven Production and Maintenance Decision-Making for Cost-Effective Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061008
.
31.
Bedford
,
T.
,
Dewan
,
I.
,
Meilijson
,
I.
, and
Zitrou
,
A.
,
2011
, “
The Signal Model: A Model for Competing Risks of Opportunistic Maintenance
,”
Eur. J. Oper. Res
,
214
(
3
), pp.
665
673
.
32.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
661
668
.
33.
Gu
,
X.
,
Jin
,
X.
, and
Ni
,
J.
,
2015
, “
Prediction of Passive Maintenance Opportunity Windows on Bottleneck Machines in Complex Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031017
.
34.
Shafiee
,
M.
,
Finkelstein
,
M.
, and
Berenguer
,
C.
,
2015
, “
An Opportunistic Condition-Based Maintenance Policy for Offshore Wind Turbine Blades Subject to Degradation and Environmental Shocks
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
463
471
.
35.
Fang
,
X.
,
Zhou
,
R.
, and
Gebraeel
,
N.
,
2015
, “
An Adaptive Functional Regression-Based Prognostic Model for Applications With Missing Data
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
266
274
.
36.
Yildirim
,
M.
,
Sun
,
X. M.
, and
Gebraeel
,
N.
,
2016
, “
Sensor-Driven Condition-Based Generator Maintenance Scheduling—Part II: Incorporating Operations
,”
IEEE Trans. Power Syst.
,
31
(
6
), pp.
4263
4271
.
37.
Gebraeel
,
N.
,
Lawley
,
M.
,
Li
,
R.
, and
Ryan
,
J.
,
2005
, “
Residual Life Distributions From Component Degradation Signals: A Bayesian Approach
,”
IIE Trans.
,
37
(
6
), pp.
542
557
.
38.
Zhou
,
Q.
,
Son
,
J.
,
Zhou
,
S.
,
Mao
,
X.
, and
Salman
,
M.
,
2014
, “
Remaining Useful Life Prediction of Individual Units Subject to Hard Failure
,”
IIE Trans.
,
46
(
10
), pp.
1017
1030
.
39.
Zhang
,
Y.
, and
Liao
,
H.
,
2015
, “
Analysis of Destructive Degradation Tests for a Product With Random Degradation Initiation Time
,”
IEEE Trans. Reliab.
,
64
(
1
), pp.
516
527
.
40.
Shu
,
Y.
,
Feng
,
Q.
, and
Coit
,
D. W.
,
2015
, “
Life Distribution Analysis Based on Lévy Subordinators for Degradation With Random Jumps
,”
Nav. Res. Logist.
,
62
(
6
), pp.
483
492
.
41.
Ye
,
Z. S.
,
Chen
,
N.
, and
Shen
,
Y.
,
2015
, “
A New Class of Wiener Process Models for Degradation Analysis
,”
Reliab. Eng. Syst. Saf.
,
139
, pp.
58
67
.
42.
Chen
,
N.
,
Ye
,
Z. S.
,
Xiang
,
Y.
, and
Zhang
,
L.
,
2015
, “
Condition-Based Maintenance Using the Inverse Gaussian Degradation Model
,”
Eur. J. Oper. Res.
,
243
(
1
), pp.
190
199
.
43.
Wen
,
Y.
,
Wu
,
J.
,
Das
,
D.
, and
Tseng
,
T. L. B.
,
2018
, “
Degradation Modeling and RUL Prediction Using Wiener Process Subject to Multiple Change Points and Unit Heterogeneity
,”
Reliab. Eng. Syst. Saf.
,
176
, pp.
113
124
.
44.
Kharoufeh
,
J. P.
, and
Cox
,
S. M.
,
2005
, “
Stochastic Models for Degradation-Based Reliability
,”
IIE Trans.
,
37
(
6
), pp.
533
542
.
45.
Moghaddass
,
R.
, and
Zuo
,
M. J.
,
2014
, “
An Integrated Framework for Online Diagnostic and Prognostic Health Monitoring Using a Multistate Deterioration Process
,”
Reliab. Eng. Syst. Saf.
,
124
, pp.
92
104
.
46.
Gouriveau
,
R.
, and
Zerhouni
,
N.
,
2012
, “
Connexionist-Systems-Based Long Term Prediction Approaches for Prognostics
,”
IEEE Trans. Reliab.
,
61
(
4
), pp.
909
920
.
47.
Liu
,
K.
, and
Huang
,
S.
,
2014
, “
Integration of Data Fusion Methodology and Degradation Modeling Process to Improve Prognostics
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
344
354
.
48.
Liu
,
K.
,
Chehade
,
A.
, and
Song
,
C.
,
2017
, “
Optimize the Signal Quality of the Composite Health Index Via Data Fusion for Degradation Modeling and Prognostic Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1504
1514
.
49.
Fang
,
X.
,
Gebraeel
,
N.
, and
Paynabar
,
K.
,
2017
, “
Scalable Prognostic Models for Large-Scale Condition Monitoring Applications
,”
IISE Trans.
,
49
(
7
), pp.
698
710
.
50.
Fang
,
X.
,
Paynabar
,
K.
, and
Gebraeel
,
N.
,
2017
, “
Multistream Sensor Fusion-Based Prognostics Model for Systems With Single Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
159
, pp.
322
331
.
51.
Xu
,
J.
,
Wang
,
Y.
, and
Xu
,
L.
,
2014
, “
PHM-Oriented Integrated Fusion Prognostics for Aircraft Engines Based on Sensor Data
,”
IEEE Sens. J.
,
14
(
4
), pp.
1124
1132
.
52.
Meeker
,
W. Q.
,
1991
, “
Accelerated Testing: Statistical Models, Test Plans, and Data Analyses
,”
Technometrics
,
33
(
2
), pp.
236
238
.
53.
Karhunen
,
K.
,
1947
, “
Uber Lineare Methoden in der Wahrscheinlichkeitsrechnung
,”
Ann. Acad. Sci. Fenn. A1: Math. Phys.
,
47
, pp.
3
79
.
54.
Yao
,
F.
,
Müller
,
H. G.
, and
Wang
,
J. L.
,
2005
, “
Functional Data Analysis for Sparse Longitudinal Data
,”
J. Am. Stat. Assoc.
,
100
(
470
), pp.
577
590
.
55.
Xia
,
T.
,
Dong
,
Y.
,
Xiao
,
L.
,
Du
,
S.
,
Pan
,
E.
, and
Xi
,
L.
,
2018
, “
Recent Advances in Prognostics and Health Management for Advanced Manufacturing Paradigms
,”
Reliab. Eng. Syst. Saf.
,
178
, pp.
255
268
.
This content is only available via PDF.
You do not currently have access to this content.