Abstract

Variable spindle speed (VSS) technique is widely adopted for its effective suppression of chatter. However, heavy transient vibrations occur in practical machining operations although the stable machining parameters are selected according to the asymptotic stability analysis methods. In this paper, this problem is addressed through establishing a transient vibration analysis method to predict the transient behavior of VSS milling. Firstly, the discrete dynamical map of VSS milling is constructed, and the response to initial conditions (RTICs) and the response to external forcing (RTEF) can fully describe the general milling dynamics. On this basis, two transient vibration growth phenomena are found and proved that strong transient vibrations are induced by the transient growth of RTIC or RTEF. To fully predict the transient vibration growth phenomenon, the proposed method adopts the transient stability and receptivity analyses to evaluate RTIC and RTEF, respectively. Other than the existing methods, it gives a stability criterion based on both eigenvalues and nonnormal eigenvectors and considers the transient behavior to external excitation. Besides simulations, a real milling test in an existing work and VSS milling experiments are adopted for verification. The results show good agreement with the prediction of the proposed method.

References

1.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
2.
Bi
,
Q. Z.
,
Huang
,
J.
,
Lu
,
Y. A.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2019
, “
A General, Fast and Robust B-Spline Fitting Scheme for Micro-Line Tool Path Under Chord Error Constraint
,”
Sci. China Technol. Sci.
62
(
2
), pp.
321
332
.
3.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Annals Manuf. Technol.
,
53
(
2
), pp.
619
642
.
4.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), pp.
091006
.
5.
Tang
,
X.
,
Zhu
,
Z.
,
Yan
,
R.
,
Chen
,
C.
,
Peng
,
F.
,
Zhang
,
M.
, and
Li
,
Y.
,
2018
, “
Stability Prediction Based Effect Analysis of Tool Orientation on Machining Efficiency for Five-Axis Bull-Nose End Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121015
.
6.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2017
, “
Dynamics and Stability Prediction of Five-Axis Flat-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061015
.
7.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
8.
Comak
,
A.
, and
Altintas
,
Y.
,
2018
, “
Dynamics and Stability of Turn-Milling Operations With Varying Time Delay in Discrete Time Domain
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101013
.
9.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
.
10.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
A Numerical and Experimental Investigation of Period-N Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
.
11.
Tao
,
H.
,
Zhu
,
L.
,
Du
,
S.
,
Chen
,
Z.
, and
Han
,
D.
,
2018
, “
Robust Active Chatter Control in Milling Processes With Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101005
.
12.
Sexton
,
J.
,
Milne
,
R.
, and
Stone
,
B.
,
1977
, “
A Stability Analysis of Single-Point Machining With Varying Spindle Speed
,”
Appl. Math. Model.
1
(
6
), pp.
310
318
.
13.
Altintas
,
Y.
, and
Chan
,
P. K.
,
1992
, “
In-Process Detection and Suppression of Chatter in Milling
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
329
347
.
14.
Soliman
,
E.
, and
Ismail
,
F.
,
1997
, “
Chatter Suppression by Adaptive Speed Modulation
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
355
369
.
15.
Al-Regib
,
E.
,
Ni
,
J.
, and
Lee
,
S. H.
,
2003
, “
Programming Spindle Speed Variation for Machine Tool Chatter Suppression
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1229
1240
.
16.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2018
, “
Online Chatter Suppression in Turning by Adaptive Amplitude Modulation of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121003
.
17.
Tsao
,
T. C.
,
Mccarthy
,
M. W.
, and
Kapoor
,
S. G.
,
1993
, “
A New Approach to Stability Analysis of Variable Speed Machining Systems
,”
Int. J. Mach. Tools Manuf.
,
33
(
6
), pp.
791
808
.
18.
Jayaram
,
S.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2000
, “
Analytical Stability Analysis of Variable Spindle Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
391
397
.
19.
Sastry
,
S.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Dullerud
,
G. E.
,
2001
, “
Chatter Stability Analysis of The Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
753
756
.
20.
Sastry
,
S.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2015
, “
Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
10
17
.
21.
Tamas
,
I.
, and
Gabor
,
S.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.
22.
Long
,
X.
, and
Balachandran
,
B.
,
2010
, “
Stability of Up-Milling and Down-Milling Operations With Variable Spindle Speed
,”
J. Vib. Control
,
16
(
16
), pp.
1151
1168
.
23.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peign
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
.
24.
Totis
,
G.
,
2009
, “
Rcpma New Method for Robust Chatter Prediction in Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
3
), pp.
273
284
.
25.
Ding
,
Y.
,
Niu
,
J.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2016
, “
Numerical Integration Method for Stability Analysis of Milling With Variable Spindle Speeds
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011010
.
26.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2016
, “
Stability Analysis of Milling Processes With Periodic Spindle Speed Variation via the Variable-Step Numerical Integration Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114501
.
27.
Sexton
,
J. S.
, and
Stone
,
B. J.
,
1980
, “
An Investigation of the Transient Effects During Variable Speed Cutting
,”
ARCHIVE J. Mech. Eng. Sci. 1959–1982 (vols 1–23)
,
22
(
3
), pp.
107
118
.
28.
Smith
,
S.
, and
Tlusty
,
J.
,
1993
, “
Efficient Simulation Programs for Chatter in Milling
,”
Annals Cirp
,
42
(
1
), pp.
463
466
.
29.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
30.
Otto
,
A.
, and
Radons
,
G.
,
2013
, “
Application of Spindle Speed Variation for Chatter Suppression in Turning
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
2
), pp.
102
109
.
31.
Bi
,
Q.
,
Wang
,
X. Z.
,
Chen
,
H.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2018
, “
Non-Normal Dynamic Analysis for Predicting Transient Milling Stability
,”
J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
084501
.
32.
Farkas
,
M.
,
2013
,
Periodic Motions
, Vol.
104
,
Springer Science & Business Media
,
New York
.
33.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2012
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer Science & Business Media
,
New York
.
34.
Wan
,
M.
,
Zhang
,
W. H.
,
Dang
,
J. W.
, and
Yang
,
Y.
,
2009
, “
New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1144
1151
.
You do not currently have access to this content.