As the most significant material removal method, milling plays a very important role in the manufacturing industry. However, chatter occurs frequently in milling, which will seriously affect the production efficiency. The accurate prediction of chatter frequency can contribute to chatter monitoring and the design of the controller for chatter mitigation. During thin-walled workpiece milling under chatter, a new phenomenon of time-varying chatter frequency is discovered and explained in this paper. This phenomenon can be explained as follows, with the workpiece material removal, the modal parameters change during thin-walled milling, which can cause the continuous change of chatter frequency. In order to predict the varying modal parameters, this paper provided an efficient tool, the B-spline wavelet on interval finite element method (BSWIFEM), which can possess the material removal problem more accurately and more rapidly. Based on the calculated modal parameters, the time-varying chatter frequency can be obtained with the chatter frequency calculation formulas. To verify the calculated results, a number of milling tests are implemented on thin-walled parts. The experimental results show that the calculated chatter frequency is in good agreement with the measured chatter frequency, which validates the effectiveness of the proposed method.

References

1.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
2.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
J.
,
Yan
,
R.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Multi Harmonic and Random Stiffness Excitation for Milling Chatter Suppression
,”
Mech. Syst. Signal Process.
120
(
1
), pp.
777
792
.
3.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
.
4.
Delio
,
T.
,
Tlusty
,
J.
, and
Smith
,
S.
,
1992
, “
Use of Audio Signals for Chatter Detection and Control
,”
J. Eng. Ind.
,
114
(
2
), pp.
146
157
.
5.
Dombovari
,
Z.
,
Iglesias
,
A.
,
Zatarain
,
M.
, and
Insperger
,
T.
,
2011
, “
Prediction of Multiple Dominant Chatter Frequencies in Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
457
464
.
6.
Zhang
,
X.
,
Wang
,
C.
,
Liu
,
J.
,
Yan
,
R.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Robust Active Control Based Milling Chatter Suppression with Perturbation Model via Piezoelectric Stack Actuators
,”
Mech. Syst. Signal Process.
120
(
1
), pp.
808
835
.
7.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P.
, and
Mann
,
B.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
ASME J. Sound Vib.
,
262
(
2
), pp.
333
345
.
8.
Insperger
,
T.
,
Mann
,
B. P.
,
Surmann
,
T.
, and
Stépán
,
G.
,
2008
, “
On the Chatter Frequencies of Milling Processes with Runout
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1081
1089
.
9.
Eynian
,
M.
,
2015
, “
Vibration Frequencies in Stable and Unstable Milling
,”
Int. J. Mach. Tools Manuf.
90
(
1
), pp.
44
49
.
10.
Eynian
,
M.
,
2015
, “
Prediction of Vibration Frequencies in Milling Using Modified Nyquist Method
,”
CIRP J. Manuf. Sci. Technol.
,
11
, pp.
73
81
.
11.
Feng
,
J.
,
Wan
,
M.
,
Gao
,
T.-Q.
, and
Zhang
,
W.-H.
,
2018
, “
Mechanism of Process Damping in Milling of Thin-Walled Workpiece
,”
Int. J. Mach. Tools Manuf.
134
(
1
), pp.
1
19
.
12.
Wan
,
M.
,
Dang
,
X.-B.
,
Zhang
,
W.-H.
, and
Yang
,
Y.
,
2018
, “
Optimization and Improvement of Stable Processing Condition by Attaching Additional Masses for Milling of Thin-Walled Workpiece
,”
Mech. Syst. Signal Process.
103
(
1
), pp.
196
215
.
13.
Yang
,
Y.
,
Zhang
,
W.-H.
,
Ma
,
Y.-C.
, and
Wan
,
M.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
109
(
1
), pp.
36
48
.
14.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
15.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
16.
Arnaud
,
L.
,
Gonzalo
,
O.
,
Seguy
,
S.
,
Jauregi
,
H.
, and
Peigné
,
G.
,
2011
, “
Simulation of low Rigidity Part Machining Applied to Thin-Walled Structures
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
479
488
.
17.
Avitabile
,
P.
,
2015
, “
Modal Space-in our own Little World
,”
Exp. Tech.
,
39
(
1
), pp.
3
10
.
18.
Geng
,
J.
,
Zhang
,
X.
, and
Chen
,
X.
,
2018
, “
High-Frequency Dynamic Response of Thin Plate with Uncertain Parameter Based on Average Wavelet Finite Element Method (AWFEM)
,”
Mech. Syst. Signal Process.
110
(
1
), pp.
180
192
.
19.
Geng
,
J.
,
Zhang
,
X.
,
Chen
,
X.
,
Wang
,
C.
, and
Xiang
,
J.
,
2018
, “
Mid-frequency Dynamic Characteristics Prediction of Thin Plate Based on B-Spline Wavelet on Interval Finite Element Method
,”
Appl. Math. Modell.
62
(
1
), pp.
526
541
.
20.
Hindiin
,
R.
,
1951
, “
Influence of Rotary Inertia and Shear on Flexural Motion of Isotropic Elastic Plates
,”
J. Appl. Mech.
18
(
1
), pp.
31
38
.
21.
Goswami
,
J. C.
,
Chan
,
A. K.
, and
Chui
,
C. K.
,
1995
, “
On Solving First-Kind Integral Equations Using Wavelets on a Bounded Interval
,”
IEEE Trans. Antennas Propag.
,
43
(
6
), pp.
614
622
.
22.
Quak
,
E.
, and
Weyrich
,
N.
,
1993
, “
Decomposition and Reconstruction Algorithms for Spline Wavelets on a Bounded Interval
,”
Appl. Comput. Harmon. Anal.
,
1
(
3
), pp.
217
231
.
23.
Xiang
,
J.
,
Chen
,
X.
,
He
,
Y.
, and
He
,
Z.
,
2006
, “
The Construction of Plane Elastomechanics and Mindlin Plate Elements of B-Spline Wavelet on the Interval
,”
Finite Elem. Anal. Des.
,
42
(
14–15
), pp.
1269
1280
.
24.
Xue
,
X.
,
Zhang
,
X.
,
Li
,
B.
,
Qiao
,
B.
, and
Chen
,
X.
,
2014
, “
Modified Hermitian Cubic Spline Wavelet on Interval Finite Element for Wave Propagation and Load Identification
,”
Finite Elem. Anal. Des.
91
(
1
), pp.
48
58
.
25.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
26.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
27.
Wang
,
C.
,
Zhang
,
X.
,
Cao
,
H.
,
Chen
,
X.
, and
Xiang
,
J.
,
2018
, “
Milling Stability Prediction and Adaptive Chatter Suppression Considering Helix Angle and Bending
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9-12
), pp.
3665
3677
.
28.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
Y.
,
Cao
,
H.
, and
Chen
,
X.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression via Piezoelectric Stack Actuators
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
53
66
.
29.
Wang
,
C.
,
Zhang
,
X.
,
Yan
,
R.
,
Chen
,
X.
, and
Cao
,
H.
,
2018
, “
Multi Harmonic Spindle Speed Variation for Milling Chatter Suppression and Parameters Optimization
,”
Precis. Eng.
55
(
1
), pp.
268
274
.
30.
Zhang
,
X.
,
Wang
,
C.
,
Gao
,
R. X.
,
Yan
,
R.
,
Chen
,
X.
, and
Wang
,
S.
,
2016
, “
A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors
,”
Sensors
,
16
(
1
), p.
68
.
31.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
.
32.
Zhang
,
X.
,
Yin
,
Z.
,
Gao
,
J.
,
Liu
,
J.
,
Gao
,
R. X.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Discrete Time-Delay Optimal Control Method for Experimental Active Chatter Suppression and Its Closed-Loop Stability Analysis
,”
ASME J. Manuf. Sci. Eng.
141
(
5
), p.
051003
.
33.
Yang
,
Z.
,
Chen
,
X.
,
Li
,
B.
,
He
,
Z.
, and
Miao
,
H.
, “
Vibration Analysis of Curved Shell Using B-Spline Wavelet on the Interval (BSWI) Finite Elements Method and General Shell Theory
,”
Proc. IEEE International Conference on Progress in Informatics and Computing
, pp.
738
742
.
34.
Yang
,
Z.
,
Chen
,
X.
,
He
,
Y.
,
He
,
Z.
, and
Zhang
,
J.
,
2014
, “
The Analysis of Curved Beam Using B-Spline Wavelet on Interval Finite Element Method
,”
Shock Vib.
, 2014,(2014-2-25),
2014
(
3
), pp.
67
75
.
You do not currently have access to this content.