This paper proposes a three-step cost estimation methodology that dynamically adapts the focus of the analysis on the progress of the development phases and on the different levels of aggregation of the product architecture. At each step, different qualitative and quantitative techniques are progressively integrated according to the degree of data granularity required by the advancement of the product development. Moreover, a fixed set of cost drivers are identified to express the costs at different phases of the product lifecycle. The different levels of the product architecture are instead used as a framework to collect and bundle data for a cost analysis, which gradually increases the accuracy. Hence, the purpose of this research is to move the focus from merely estimating the structuring data and information for the cost analysis. The methodology is explicitly aimed at standardized assembled systems/products, characterized by a high number of parts and modules shared among different product versions. The approach was tested and validated at an automotive company that designs, produces, and markets measurement devices for engine development. Operatively, the approach can be used by the development team to evaluate the impact of different design alternatives, deriving the lifecycle costs of the product once the design choices are made. By tracking the development process at each aggregation level, designers can assess cost reduction by monitoring the impact of selected cost drivers while the product development process is in progress.

References

References
1.
Ma
,
Y. S.
,
Sajadfar
,
N.
, and
Triana
,
L. C.
,
2014
, “
A Feature-Based Semantic Model for Automatic Product Cost Estimation
,”
Int. J. Eng. Technol.
,
6
(
2
), p.
109
.
2.
Niazi
,
A.
,
Dai
,
J. S.
,
Balabani
,
S.
, and
Seneviratne
,
L.
,
2006
, “
Product Cost Estimation: Technique Classification and Methodology Review
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
563
575
.
3.
Altavilla
,
S.
,
Montagna
,
F.
, and
Cantamessa
,
M.
,
2018
, “
A multilayer Taxonomy of Cost Estimation Techniques, Looking at the Whole Product Lifecycle
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
030801
.
4.
Rush
,
C.
, and
Roy
,
R.
,
2000
, “
Analysis of Cost Estimating Processes Used Within a Concurrent Engineering Environment Throughout a Product Life Cycle
,”
7th ISPE International Conference on Concurrent Engineering: Research and Applications
,
Lyon, France
,
July 17–20
, Technomic Inc., PA, pp.
58
67
.
5.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
London
.
6.
Xu
,
Y.
,
Elgh
,
F.
,
Erkoyuncu
,
J. A.
,
Bankole
,
O.
,
Goh
,
Y.
,
Cheung
,
W. M.
,
Baguley
,
P.
,
Wang
,
Q.
,
Arundachawat
,
P.
,
Shehab
,
E.
, and
Newnes
,
L.
,
2012
, “
Cost Engineering for Manufacturing: Current and Future Research
,”
Int. J. Comput. Integr. Manuf.
,
25
(
4–5
), pp.
300
314
.
7.
Roy
,
R.
,
Colmer
,
S.
, and
Griggs
,
T.
,
2005
, “
Estimating the Cost of a New Technology Intensive Automotive Product: A Case Study Approach
,”
Int. J. Prod. Econ.
,
97
, pp.
210
226
.
8.
Duran
,
O.
,
Rodriguez
,
N.
, and
Consalter
,
L.
,
2009
, “
Neural Networks for Cost Estimation of Shell and Tube Heat Exchangers
,”
Expert Syst. Appl.
,
36
(
4
), pp.
7435
7440
.
9.
Seo
,
K.
, and
Ahn
,
B.
,
2006
, “
A Learning Algorithm Based Estimation Method for Maintenance Cost of Product Concepts
,”
Comput. Ind. Eng.
,
50
(
1
), pp.
66
75
.
10.
Cavalieri
,
S.
,
Maccarrone
,
P.
, and
Pinto
,
R.
,
2004
, “
Parametric vs Neural Network Models for the Estimation of Production Costs: A Case Study in the Automotive Industry
,”
Int. J. Prod. Econ.
,
91
(
2
), pp.
165
177
.
11.
Cheung
,
W.
,
Marsh
,
R.
,
Griffin
,
P.
,
Newnes
,
L.
,
Mileham
,
A.
, and
Lanham
,
J.
,
2015
, “
Towards Cleaner Production: A Roadmap for Predicting Product End-of-Life Costs at Early Design Concept
,”
J. Cleaner Prod.
,
87
, pp.
431
441
.
12.
Layer
,
A.
,
Brinke
,
E.
,
Houten
,
F.
,
Kals
,
H.
, and
Haasis
,
S.
,
2002
, “
Recent and Future Trends in Cost Estimation
,”
Int. J. Comput. Integr. Manuf.
,
15
(
6
), pp.
499
510
.
13.
Seo
,
K.
,
2006
, “
A Methodology for Estimating the Product Life Cycle Cost Using a Hybrid GA and ANN Model
,”
International Conference on Artificial Neural Networks
,
Springer
,
Berlin, Heidelberg
, pp.
386
395
.
14.
H’mida
,
F.
,
Martin
,
P.
, and
Vernadat
,
F.
,
2006
, “
Cost Estimation in Mechanical Production: The Cost Entity Approach Applied to Integrated Product Engineering
,”
Int. J. Prod. Econ.
,
103
(
1
), pp.
17
35
.
15.
Zhao
,
X.
,
Verhagen
,
W.
, and
Curran
,
R.
,
2015
, “
Estimation of Aircraft Component Production Cost Using Knowledge Based Engineering Techniques
,”
Adv. Eng. Inform.
,
29
(
3
), pp.
616
632
.
16.
Kaufmann
,
M.
,
Zenkert
,
D.
, and
Mattei
,
C.
,
2008
, “
Cost Optimization of Composite Aircraft Structures Including Variable Laminate Qualities
,”
Compos. Sci. Technol.
,
68
(
13
), pp.
2748
2755
.
17.
Johnson
,
M.
, and
Kirchain
,
R.
,
2009
, “
Quantifying the Effects of Product Family Decisions on Material Selection: A Process-Based Costing Approach
,”
Int. J. Prod. Econ.
,
120
(
2
), pp.
653
668
.
18.
Haroun
,
A.
,
2015
, “
Maintenance Cost Estimation: Application of Activity-Based Costing as a Fair Estimate Method
,”
J. Qual. Maintenance Eng.
,
21
(
3
), pp.
258
270
.
19.
Lin
,
T.
,
Lee
,
J.
, and
Lwin
,
T.
,
2011
, “
Integrated Approach for Rotor Blade Manufacturing Cost Estimate
,”
Aircr. Eng. Aerosp. Technol.
,
83
(
4
), pp.
235
244
.
20.
Ardiansyah
,
R.
,
Sutopo
,
W.
, and
Nizam
,
M.
,
2013
, “
A Parametric Cost Estimation Model to Develop Prototype of Electric Vehicle Based on Activity-Based Costing
,”
IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Bangkok, Thailand
,
Dec. 10–13
, pp.
385
389
.
21.
Germani
,
M.
,
Cicconi
,
P.
, and
Mandolini
,
M.
,
2011
, “
Manufacturing Cost Estimation During Early Phases of Machine Design
,”
DS 68-5: Proceedings of the 18th International Conference on Engineering Design
,
Lyngby, Denmark
,
Aug. 15–19
, Vol.
5
, pp.
198
209
.
22.
Wang
,
Y.
,
Yang
,
J.
, and
Shi
,
J.
,
2011
, “
Study on Activity-Based Cost Estimation of Steel Enterprise
,”
IEEE 18th International Conference on Industrial Engineering and Engineering Management
,
Changchun, China
,
Sept. 3–5
, pp.
968
972
.
23.
Tu
,
Y.
,
Xie
,
S.
, and
Fung
,
R.
,
2007
, “
Product Development Cost Estimation in Mass Customization
,”
IEEE Trans. Eng. Manag.
,
54
(
1
), pp.
29
40
.
24.
Deng
,
S.
, and
Yeh
,
T.
,
2011
, “
Using Least Squares Support Vector Machines for the Airframe Structures Manufacturing Cost Estimation
,”
Int. J. Prod. Econ.
,
131
(
2
), pp.
701
708
.
25.
Agyapong-Kodua
,
K.
,
Asare
,
K.
, and
Ceglarek
,
D.
,
2014
, “
Digital Modelling Methodology for Effective Cost Assessment
,”
Proc. CIRP
,
17
, pp.
744
749
.
26.
Luiza
,
D.
,
Daniela
,
G.
, and
Alexandru
,
E.
,
2014
, “
Modeling and Estimation of the Product Time and Cost in Manufacturing System-Market Relationship
,”
Int. J. Interact. Des. Manuf.
,
8
(
4
), pp.
277
282
.
27.
Heller
,
J.
,
Löwer
,
M.
, and
Feldhusen
,
J.
,
2014
, “
Requirement Based Future Product Cost Estimation Using Lifecycle Assessment Data
,”
Proc. CIRP
,
15
, pp.
520
525
.
28.
Wasim
,
A.
,
Shehab
,
E.
,
Abdalla
,
H.
,
Al-Ashaab
,
A.
,
Sulowski
,
R.
, and
Alam
,
R.
,
2013
, “
An Innovative Cost Modelling System to Support Lean Product and Process Development
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
165
181
.
29.
Sajadfar
,
N.
, and
Ma
,
Y.
,
2015
, “
A Hybrid Cost Estimation Framework Based on Feature-Oriented Data Mining Approach
,”
Adv. Eng. Inform.
,
29
(
3
), pp.
633
647
.
30.
Khalifelu
,
Z. A.
, and
Gharehchopogh
,
F. S.
,
2012
, “
A Survey of Data Mining Techniques in Software Cost Estimation
,”
AWERProcedia Inf. Technol. Comput. Sci. J.
,
1
, pp.
331
342
.
31.
Choudhary
,
A.
,
Harding
,
J.
, and
Tiwari
,
M.
,
2009
, “
Data Mining in Manufacturing: A Review Based on the Kind of Knowledge
,”
J. Intell. Manuf.
,
20
(
5
), pp.
501
521
.
32.
Chou
,
J.
, and
Tseng
,
H.
,
2011
, “
Establishing Expert System for Prediction Based on the Project-Oriented Data Warehouse
,”
Expert Syst. Appl.
,
38
(
1
), pp.
640
651
.
33.
Gunduz
,
M.
,
Ugur
,
L. O.
, and
Ozturk
,
E.
,
2011
, “
Parametric Cost Estimation System for Light Rail Transit and Metro Trackworks
,”
Expert Syst. Appl.
,
38
(
3
), pp.
2873
2877
.
34.
Watson
,
P.
,
Curran
,
R.
,
Murphy
,
A.
, and
Cowan
,
S.
,
2006
, “
Cost Estimation of Machined Parts Within an Aerospace Supply Chain
,”
Concurrent Eng.
,
14
(
1
), pp.
17
26
.
35.
Liu
,
H.
,
Gopalkrishnan
,
V.
,
Ng
,
W.
,
Song
,
B.
, and
Li
,
X.
,
2008
, “
An Intelligent System for Estimating Full Product Life Cycle Cost at the Early Design Stage
,”
Int. J. Prod. Lifecycle Manag.
,
3
(
2–3
), pp.
96
113
.
36.
Watson
,
I.
, and
Marir
,
F.
,
1994
, “
Case-Based Reasoning: A Review
,”
Knowl. Eng. Rev.
,
9
(
4
), pp.
327
354
.
37.
Li-hua
,
X.
, and
Yun-feng
,
W.
,
2004
, “
Research on Rapid Cost Evaluation Based on Case-Based Reasoning
,”
Integr. Manuf. Syst.
,
10
(
12
), pp.
1605
1609
.
38.
Gayretli
,
A.
, and
Abdalla
,
H. S.
,
1999
, “
An Object-Oriented Constraints-Based System for Concurrent Product Development
,”
Rob. Comput. Integr. Manuf.
,
5
(
2
), pp.
133
144
.
39.
Aamodt
,
A.
, and
Plaza
,
E.
,
1994
, “
Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches
,”
AI Commun.
,
7
(
1
), pp.
39
59
. http://www.iiia.csic.es/∼enric/papers/AICom.pdf
40.
Duverlie
,
P.
, and
Castelain
,
J. M.
,
1999
, “
Cost Estimation During Design Step: Parametric Method Versus Case Based Reasoning Method
,”
Int. J. Adv. Manuf. Technol.
,
15
(
12
), pp.
895
906
.
41.
Rehman
,
S.
, and
Guenov
,
M.
,
1998
, “
A Methodology for Modeling Manufacturing Costs at Conceptual Design
,”
Comput. Ind. Eng.
,
35
, pp.
623
626
.
42.
Liao
,
T. W.
,
Zhiming
,
Z.
, and
Claude
,
R.
,
1998
, “
Similarity Measures for Retrieval in Case-Based Reasoning Systems
,”
Appl. Artif. Intell.
,
12
(
4
), pp.
267
288
.
43.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Des.
,
17
(
2
), pp.
99
119
.
44.
Martin
,
M.
, and
Ishii
,
K.
,
1997
, “
Design for Variety: Development of Complexity Indices and Design Charts
,”
Proceedings of the ASME Design Engineering Technical Conferences
,
Sacramento, CA
,
Sept. 14–17
, ASME Paper No. DETC97/DFM-4359.
45.
Cooper
,
R.
,
1988
, “
The Rise of Activity Based Costing Part One: What Is an Activity Based Cost System?
J. Cost Manag.
pp.
68
73
.
46.
Qian
,
L.
, and
Ben-Arieh
,
D.
,
2008
, “
Parametric Cost Estimation Based on Activity-Based Costing: A Case Study for Design and Development of Rotational Parts
,”
Int. J. Prod. Econ.
,
113
(
2
), pp.
805
818
.
47.
Park
,
J.
, and
Simpson
,
T. W.
,
2008
, “
Toward an Activity-Based Costing System for Product Families and Product Platforms in the Early Stages of Development
,”
Int. J. Prod. Res.
,
46
(
1
), pp.
99
130
.
48.
Dean
,
E. B.
,
1995
, “
Parametric Cost Deployment
.”
49.
Brunoe
,
T. D.
, and
Nielsen
,
P.
,
2012
, “
A Case of Cost Estimation in an Engineer-to-Order Company Moving Towards Mass Customization
,”
Int. J. Mass Customisation
,
4
(
3–4
), pp.
239
254
.
50.
Poli
,
C.
,
Escudero
,
J.
, and
Fermandez
,
R.
,
1988
, “
How Part Design Affects Injection-Moulding Tool Costs
,”
Mach. Des.
,
60
(
1
), pp.
101
104
.
51.
Kvanli
,
A. H.
,
Guynes
,
C. S.
, and
Pavur
,
R. J.
,
1995
,
Introduction to Business Statistics: A Computer Integrated Approach
,
4th
ed.,
West Publishing
,
New York
.
52.
Siegel
,
A. F.
, and
Morgan
,
C. J.
,
1996
,
Statistics and Data Analysis: An Introduction
,
Wiley
,
New York
.
53.
Lapin
,
L.
,
1993
,
Statistics for Modern Business Decisions.
6th ed.
,
Harcourt Brace Jovanovich
,
San Diego
.
54.
CLEPA
.
2017
. “
R&I Forerunner
.” https://clepa.eu/who-and-what-we-represent/ri-forerunner-2/. Accessed February 17, 2018.
55.
Dziaduch
,
I.
,
2010
, “
Investment Profitability Evaluation on the Basis of Life Cycle Cost (LCC) and Discount Method (NPV)
,”
Logist.Transp.
,
10
, pp.
19
24
. http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.mhp-dea9abfb-61d3-4085-992d-8344ed187938/c/132-635-1-PB.pdf
56.
Alting
,
L.
,
1995
, “
Life Cycle Engineering and Design
,”
CIRP Ann. Manuf. Technol.
,
44
, pp.
569
580
.
You do not currently have access to this content.