Sandwich panels with metal foam cores have a tremendous potential in various industrial applications due to their outstanding strength-to-weight ratio, stiffness, and shock absorption capacity. A recent study paved the road toward a more economical implementation of sandwich panels, by showing that the material can be successfully bent up to large angles using laser forming. The study also developed a fundamental understanding of the underlying bending mechanisms and established accurate numerical models. In this study, these efforts were carried further, and the impact of the foam core structure, the facesheet and foam core compositions, and the adhesion method on the bending efficiency and the bending limit was investigated. These factors were studied individually and collectively by comparing two fundamentally different sandwich panel types. Thermally induced stresses at the facesheet/core interface were thoroughly considered. Numerical modeling was carried out under different levels of geometric accuracy to complement bending experiments under a wide range of process conditions. Interactions between panel properties and process conditions were demonstrated and discussed.

References

1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heineman
,
Washington, DC
.
2.
Banhart
,
J.
, and
Seeliger
,
H. W.
,
2008
, “
Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications
,”
Adv. Eng. Mater.
,
10
(
9
), p.
793
.
3.
Banhart
,
J.
, and
Seeliger
,
H. W.
,
2012
, “
Recent Trends in Aluminum Foam Sandwich Technology
,”
Adv. Eng. Mater.
,
14
(
12
), pp.
1082
1087
.
4.
Hebsur
,
M.
,
Noebe
,
R.
, and
Revilock
,
D.
,
2003
, “
Impact Resistance of Lightweight Hybrid Structures for Gas Turbine Engine Fan Containment Applications
,”
J. Mater. Eng. Perform.
,
12
(
4
), pp.
470
479
.
5.
Hanssen
,
A. G.
,
Girard
,
Y.
,
Olovsson
,
L.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2006
, “
A Numerical Model for Bird Strike of Aluminium Foam-Based Sandwich Panels
,”
Int. J. Impact Eng.
,
32
, pp.
1127
1144
.
6.
Kennedy
,
A.
,
2012
,
Powder Metallurgy, Porous Metals and Metal Foams Made from Powders
,
InTech
,
Rijeka, Croatia
, Chap. 2.
7.
D’Urso
,
G.
, and
Maccarini
,
G.
,
2011
, “
The Formability of Aluminum Foam Sandwich Panels
,”
Int. J. Mater. Form.
,
5
(
3
), pp.
243
257
.
8.
Contorno
,
D.
,
Filice
,
L.
,
Fratini
,
L.
, and
Micari
,
F.
,
2006
, “
Forming of Aluminum Foam Sandwich Panels: Numerical Simulations and Experimental Tests
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
364
367
.
9.
Mata
,
H.
,
Santos
,
A.
,
Parente
,
M.
,
Valente
,
R.
,
Fernandes
,
A.
, and
Jorge
,
N.
,
2013
, “
Study on the Forming of Sandwich Shells With Closed-Cell Foam Cores
,”
Int. J. Mater. Form.
,
7
(
4
), pp.
413
24
.
10.
Bucher
,
T.
,
Cardenas
,
S.
,
Verma
,
R.
,
Li
,
W.
, and
Yao
,
Y. L.
,
2018
, “
Laser Forming of Sandwich Panels With Metal Foam Cores
,”
ASME J. Manuf. Sci. Eng.
140
(
11
), p.
111015
.
11.
Raj
,
S. V.
,
Ghosn
,
L. J.
,
Lerch
,
B. A.
,
Hebsur
,
M.
,
Cosgriff
,
L. M.
, and
Fedor
,
J.
,
2007
, “
Mechanical Properties of 17-4PH Stainless Steel Foam Panels
,”
Mater. Sci. Eng. A
,
456
(
1–2
), pp.
305
316
.
12.
Vollertsen
,
F.
,
1993
, “
The Mechanisms of Laser Forming
,”
CIRP Ann.
,
42
(
1
), pp.
301
304
.
13.
Abawi
,
A. T.
,
2004
, “
The Bending of Bonded Layers Due to Thermal Stress
,”
Hughes Research Laboratories,
Malibu, CA
.
14.
Deshpande
,
V.
, and
Fleck
,
N.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
15.
Bucher
,
T.
,
Young
,
A.
,
Zhang
,
M.
,
Chen
,
C. J.
, and
Yao
,
Y. L.
,
2018
, “
Thermally Induced Mechanical Response of Metal Foam During Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041004
.
16.
Bucher
,
T.
,
Bolger
,
C.
,
Zhang
,
M.
,
Chen
,
C.
, and
Yao
,
Y. L.
,
2016
, “
Effect of Geometrical Modeling on Prediction of Laser-Induced Heat Transfer in Metal Foam
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121008
.
17.
Li
,
W.
, and
Yao
,
Y. L.
,
2001
, “
Laser Forming With Constant Line Energy
,”
Int. J. Adv. Manuf. Technol.
,
17
, pp.
196
203
.
18.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.
19.
Spittel
,
T.
,
Spittel
,
M.
, and
Warlimont
,
H.
,
2011
,
Non-ferrous Alloys – Light Metals Vol. VIII/2C2, AlSi8
,
Springer
,
Berlin, Germany
.
20.
Spittel
,
T.
,
Spittel
,
M.
, and
Warlimont
,
H.
,
2011
.,
Non-ferrous Alloys – Light Metals Vol. VIII/2C2, AlMg1
,
Springer
,
Berlin, Germany
.
21.
Spittel
,
T.
,
Spittel
,
M.
, and
Warlimont
,
H.
,
2011
,
Non-ferrous Alloys – Light Metals Vol. VIII/2C2, Al 99.7
,
Springer
,
Berlin, Germany
.
22.
Yang
,
C. C.
, and
Nakae
,
H.
,
2000
, “
Foaming Characteristics Control During Production of Aluminum Alloy Foam
,”
J. Alloys Compd.
,
313
, pp.
188
191
.
23.
Li
,
W.
, and
Yao
,
Y. L.
,
2000
, “
Numerical and Experimental Study of Strain Rate Effects in Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), p.
445
.
24.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.
You do not currently have access to this content.