Gear shaping, a widely used machining method for circular gears, was generalized to noncircular gears in recent works using a 3-linkage machine tool. As the pitch curve normals of noncircular gears change constantly in processing, angles may exist between the pitch curve normals and the cutter relieving direction, bringing in turn cutter retracting interference.

Regarding this, the paper proposes a 4-linkage shaping method. Through linkage motion of 4 machine tool axes, noncircular gear pitch normals are along the cutter relieving direction, avoiding completely cutter retracting interference. On such basis, a mathematical model is first established, the cutting process is then discussed and a cutting experiment is finally carried out, proving the validity of the proposed method.

References

1.
Litvin
,
F. L.
,
Gonzalez-Perez
,
I.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2008
, “
Design and Investigation of Gear Drives With Non-Circular Gears Applied for Speed Variation and Generation of Functions
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
3783
3802
.
2.
Freudenstein
,
F.
, and
Chen
,
C. K.
,
1991
, “
Variable-Ratio Chain Drives With Noncircular Sprockets and Minimum Slack-Theory and Application
,”
ASME J. Mech. Des.
,
113
, pp.
253
262
.
3.
Emura
,
T.
, and
Arakawa
,
A.
,
1992
, “
A New Steering Mechanism Using Noncircular Gears
,”
JSME Int. J. Ser. III
,
35
, pp.
604
610
.
4.
Ottaviano
,
E.
,
Mundo
,
D.
,
Danieli
,
G. A.
, and
Ceccarelli
,
M.
,
2008
, “
Numerical and Experimental Analysis of Non-Circular Gears and Cam-Follower Systems as Function Generators
,”
Mech. Mach. Theory
,
43
, pp.
996
1008
.
5.
Zheng
,
F.
,
Hua
,
L.
, and
Han
,
X.
,
2016
, “
The Mathematical Model and Mechanical Properties of Variable Center Distance Gears Based on Screw Theory
,”
Mech. Mach. Theory
,
101
, pp.
116
139
.
6.
Terada
,
H.
,
Zhu
,
Y.
,
Suzuki
,
M.
,
Cheng
,
C.
, and
Takahashi
,
R.
,
2012
, “
Developments of a Knee Motion Assist Mechanism for Wearable Robot With a Non-Circular Gear and Grooved Cams
,”
Mech. Mach. Sci.
,
3
, pp.
69
76
.
7.
Liu
,
J. Y.
,
Chang
,
S. L.
, and
Mundo
,
D.
,
2006
, “
Study on the Use of a Non-Circular Gear Train for the Generation of Figure-8 Patterns
,”
J. Mech. Eng. Sci.
,
220
, pp.
1229
1236
.
8.
Mundo
,
D.
,
2006
, “
Geometric Design of a Planetary Gear Train With Non-Circular Gears
,”
Mech. Mach. Theory
, pp.
456
472
.
9.
Hebbale
,
K.
,
Li
,
D.
,
Zhou
,
J.
,
Duan
,
C.
,
Kao
,
C.-K.
,
Samie
,
F.
,
Lee
,
C.
, and
Gonzales
,
R.
,
2014
, “
Study of a Non-Circular Gear Infinitely Variable Transmission
,”
ASME
Paper No. DSCC2014-6083.
10.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Synthesis of Indexing Mechanisms With Non-Circular Gears
,”
Mech. Mach. Theory
,
105
(
4
), pp.
108
128
.
11.
Dooner
,
D. B.
,
1997
, “
Use of Noncircular Gears to Reduce Torque and Speed Fluctuations in Rotating Shafts
,”
ASME J. Mech. Des.
,
119
, pp.
299
306
.
12.
Barkah
,
D.
,
Shafiq
,
B.
, and
Dooner
,
D.
,
2002
, “
3D Mesh Generation for Static Stress Determination in Spiral Noncircular Gears Used for Torque Balancing
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
313
319
.
13.
Mundo
,
D.
,
Gatti
,
G.
, and
Dooner
,
D. B.
,
2009
, “
Optimized Five-Bar Linkages With Non-Circular Gears for Exact Path Generation
,”
Mech. Mach. Theory
,
44
, pp.
751
760
.
14.
Modler
,
K.-H.
,
Lovasz
,
E.-C.
,
Bär
,
G. F.
,
Neumann
,
R.
,
Perju
,
D.
,
Perner
,
M.
, and
Mărgineanu
,
D.
,
2009
, “
General Method for the Synthesis of Geared Linkages With Non-Circular Gears
,”
Mech. Mach. Theory
,
44
, pp.
726
738
.
15.
Karpov
,
O.
,
Nosko
,
P.
,
Fil
,
P.
,
Nosko
,
O.
, and
Olofssond
,
U.
,
2017
, “
Prevention of Resonance Oscillations in Gear Mechanisms Using Non-Circular Gears
,”
Mech. Mach. Theory
,
114
, pp.
1
10
.
16.
Chen
,
C. F.
, and
Tsay
,
C. B.
,
2004
, “
Computerized Tooth Profile Generation and Analysis of Characteristics of Elliptical Gears With Circular-Arc Teeth
,”
J. Mater. Process. Technol.
,
148
, pp.
226
234
.
17.
Zheng
,
F.
,
Xinghui
,
H.
,
Hua
,
L.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2018
, “
Design and Manufacture of New Type of Non-Circular Cylindrical Gear Generated by Face-Milling Method
,”
Mech. Mach. Theory
,
122
, pp.
326
346
.
18.
Zheng
,
F.
,
Hua
,
L.
,
Chen
,
D.
, and
Han
,
X.
,
2016
, “
Generation of Noncircular Spiral Bevel Gears by Face-Milling Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081013
.
19.
Katz
,
A.
,
Erkorkmaz
,
K.
, and
Ismail
,
F.
,
2018
, “
Virtual Model of Gear Shaping—Part I: Kinematics, Cutter–Workpiece Engagement, and Cutting Forces
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071007
.
20.
Katz
,
A.
,
Erkorkmaz
,
K.
, and
Ismail
,
F.
,
2018
, “
Virtual Model of Gear Shaping—Part II: Elastic Deformations and Virtual Gear Metrology
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071008
.
21.
Litvin
,
F. L.
,
Gonzalez-Perez
,
I.
,
Yukishima
,
K.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2007
, “
Generation of Planar and Helical Elliptical Gears by Application of Rack-Cutter, Hob, and Shaper
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
4321
4336
.
22.
Xia
,
L.
,
Liu
,
Y. Y.
,
Li
,
D. Z.
, and
Han
,
J.
,
2013
, “
A Linkage Model and Applications of Hobbing Non-Circular Helical Gears With Axial Shift of Hob
,”
Mech. Mach. Theory
,
70
, pp.
32
44
.
23.
Cheng
,
S. L.
, and
Tsay
,
C. B.
,
1998
, “
Computerized Tooth Profile Generation and Undercutting Analysis of Noncircular Gears Manufactured With Shaper Cutter
,”
ASME J. Mech. Des.
,
120
, pp.
92
99
.
24.
Bair
,
B.-W.
,
2002
, “
Computerized Tooth Profile Generation of Elliptical Gears Manufactured by Shaper Cutters
,”
J. Mater. Process. Technol.
,
122
, pp.
139
147
.
25.
Tsay
,
C.-B.
,
Liu
,
W.-Y.
, and
Chen
,
Y.-C.
,
2000
, “
Spur Gear Generation by Shaper Cutters
,”
J. Mater. Process. Technol.
,
104
, pp.
271
279
.
26.
Figliolini
,
G.
, and
Angeles
,
J.
,
2003
, “
The Synthesis of Elliptical Gears Generated by Shaper-Cutters
,”
ASME J. Mech. Des.
,
125
, pp.
793
801
.
27.
Jiangang
,
L.
,
Xutang
,
W.
, and
Shimin
,
M.
,
2007
, “
Numerical Computing Method of Noncircular Gear Tooth Profiles Generated by Shaper Cutters
,”
Adv. Manuf. Technol.
,
33
, pp.
1098
1105
.
28.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Linkage Model and Manufacturing Process of Shaping Non-Circular Gears
,”
Mech. Mach. Theory
,
96
, pp.
192
212
.
29.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2017
, “
Synthesis of Shaped Noncircular Gear Using a 3-Linkage CNC Shaping Machine
,”
ASME J. Manuf. Sci. Eng.
,
139
, p.
071003
.
30.
Zheng
,
F.
,
Guo
,
X.
, and
Zhang
,
M.
,
2018
, “
Non-Uniform Flank Rolling Measurement for Shaped Noncircular Gears
,”
Measurement
,
116
, pp.
207
215
.
31.
Kim
,
Y. J.
,
Elber
G.
,
Bartoň
M.
,
Pottmann
H.
,
2015
, “
Precise Gouging-Free Tool Orientations for 5-Axis CNC Machining
,”
Comput.-Aided Des.
,
58
, pp.
220
229
.
32.
Senatore
,
J.
,
Moniès
,
F.
, and
Rubio
,
W.
,
2012
, “5-Axis Flank Milling of Sculptured Surfaces,”
Machining of Complex Sculptured Surfaces
,
Springer
,
New York
, pp.
33
65
.
33.
Bo
,
P.
,
Bartoň
,
M.
,
Plakhotnik
,
D.
,
Pottmann
,
H.
,
2016
, “
Towards Efficient 5-Axis Flank CNC Machining of Free-Form Surfaces via Fitting Envelopes of Surfaces of Revolution
,”
Comput.-Aided Des.
,
79
, pp.
1
11
.
34.
Fan
,
J.
, and
Ball
,
A.
,
2014
, “
Flat-end Cutter Orientation on a Quadric in Five-Axis Machining
,”
Comput.-Aided Des.
,
53
, pp.
126
138
.
35.
Erkorkmaz
,
K.
,
Katz
,
A.
,
Hosseinkhani
,
Y.
,
Plakhotnik
,
D.
,
Stautner
,
M.
, and
Ismaila
,
F.
,
2016
, “
Chip Geometry and Cutting Forces in Gear Shaping
,”
CIRP Ann. – Manuf. Technol.
,
65
, pp.
133
136
.
36.
Bouzakis
,
K.-D.
,
Lili
,
E.
,
Michailidis
,
N.
, and
Friderikos
,
O.
,
2008
, “
Manufacturing of Cylindrical Gears by Generating Cutting Processes: A Critical Synthesis of Analysis Methods
,”
CIRP Ann. – Manuf. Technol.
,
57
, pp.
676
696
.
37.
Svahn
,
M.
,
2015
, “
The Undercut Criterion of Pinion Shaper Cutters: And an Improvement by Modifying the Basic Rack Profile
,”
ASME J. Manuf. Sci. Eng.
,
138
. p.
011011
.
38.
Calleja
,
A.
,
Bo
,
P.
,
González
,
H.
,
Bartoň
,
M.
, and
López de Lacalle
,
L. N.
,
2018
, “
Highly Accurate 5-Axis Flank CNC Machining With Conical Tools
,”
Int. J. Adv. Manuf. Technol.
97
(
5-8
), pp.
1605
1615
.
39.
Fuentes
,
A.
,
Ruiz-Orzaez
,
R.
, and
Gonzalez-Perez
,
I.
,
2014
, “
Computerized Design, Simulation of Meshing, and Finite Element Analysis of Two Types of Geometry of Curvilinear Cylindrical Gears
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
321
339
.
40.
Bair
,
B. W.
,
Sung
,
M. H.
,
Wang
,
J. S.
, and
Chen
,
C. F.
,
2009
, “
Tooth Profile Generation and Analysis of Oval Gears With Circular-Arc Teeth
,”
Mech. Mach. Theory
,
44
, pp.
1306
1317
.
41.
Litvin
,
F. L.
,
Fuentes-Aznar
,
A.
, and
Gonzalez-Perez
,
I.
,
2009
,
Noncircular Gears: Design and Generation
,
Cambridge University Press
,
Cambridge, UK
, pp.
20
30
.
42.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
, and
Chen
,
D.-f.
,
2016
, “
Generation of Non-Circular Bevel Gears With Free-Form Tooth Profile and Tooth Lengthwise Based on Screw Theory
,”
ASME J. Mech. Des.
138
, p.
064501
.
43.
Shih
,
Y.-P.
, and
Zhang
,
C.-X.
, “
Manufacture of Spiral Bevel Gears Using Standard Profile Angle Blade Cutters on a Five-Axis Computer Numerical Control Machine
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061017
.
44.
Zhou
,
Y.
,
Chen
,
Z. C.
, and
Tang
,
J.
, “
A New Method of Designing the Tooth Surfaces of Spiral Bevel Gears With Ruled Surface for Their Accurate Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061004
.
You do not currently have access to this content.