Manufacturing technologies deliver products that can suffer from various defects, one of which is internal porosity. Pores are present in most of the parts produced by, e.g., casting, additive manufacturing, and injection molding and can significantly affect the performance of the final products. Due to technological and economic limits, typically porosity cannot be completely removed by optimizing process parameters. It is therefore essential to have a measurement technique that can detect and evaluate these defects accurately. Apart from conventional nondestructive techniques, such as ultrasonic testing or Archimedes’ method that suffer from various limitations, X-ray computed tomography has emerged as a promising solution capable of measuring size, spatial distribution, and shape of pores. In this paper, a method to achieve traceable computed tomography measurements of internal porosity using a reference object with calibrated internal artificial defects is described and demonstrated on an industrial case study. Furthermore, the possibility to improve measurement results by optimizing parameters used for the evaluation of acquired data is discussed. The optimization method is based on an iterative procedure that reduces to ±5 × 10−5 mm3 the error of the measured values of total void content in the reference object.

References

1.
De Chiffre
,
L.
,
Carmignato
,
S.
,
Kruth
,
J.-P.
,
Schmitt
,
R.
, and
Weckenmann
,
A.
,
2014
, “
Industrial Applications of Computed Tomography
,”
CIRP Ann. Manuf. Technol.
,
63
, pp.
655
677
.
2.
Tang
,
M.
, and
Pistorius
,
P. C.
,
2017
, “
Oxides, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting
,”
Int. J. Fatigue
,
94
, pp.
192
201
.
3.
Yadollahi
,
A.
, and
Shamsaei
,
N.
,
2017
, “
Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities
,”
Int. J. Fatigue
,
98
, pp.
14
31
.
4.
Aboulkhair
,
N. T.
,
Maskery
,
I.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Everitt
,
N. M.
,
2016
, “
The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-Like Heat Treatment
,”
Mater. Sci. Eng. A
,
667
, pp.
139
146
.
5.
Zhu
,
H.
,
Wu
,
B.
,
Li
,
D.
,
Zhang
,
D.
, and
Chen
,
Y.
,
2011
, “
Influence of Voids on the Tensile Performance of Carbon/Epoxy Fabric Laminates
,”
J. Mater. Sci. Technol.
,
27
, pp.
69
73
.
6.
Yi
,
J. Z.
,
Gao
,
Y. X.
,
Lee
,
P. D.
,
Flower
,
H. M.
, and
Lindley
,
T. C.
,
2003
, “
Scatter in Fatigue Life Due to Effects of Porosity in Cast A356-T6 Aluminum-Silicon Alloys
,”
Metall. Mater. Trans. A
,
34
, pp.
1879
90
.
7.
Lambert
,
J.
,
Chambers
,
A. R.
,
Sinclair
,
I.
, and
Spearing
,
S. M.
,
2012
, “
3D Damage Characterisation and the Role of Voids in the Fatigue of Wind Turbine Blade Materials
,”
Compos. Sci. Technol.
,
72
, pp.
337
343
.
8.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
, pp.
730
59
.
9.
Wits
,
W. W.
,
Carmignato
,
S.
,
Zanini
,
F.
, and
Vaneker
,
T. H. J.
,
2016
, “
Porosity Testing Methods for the Quality Assessment of Selective Laser Melted Parts
,”
CIRP Ann. Manuf. Technol.
,
65
, pp.
201
204
.
10.
Nicoletto
,
G.
,
Anzelotti
,
G.
, and
Konečná
,
R.
,
2010
, “
X-Ray Computed Tomography vs. Metallography for Pore Sizing and Fatigue of Cast Al-Alloys
,”
Proc. Eng.
,
2
, pp.
547
554
.
11.
Nikishkov
,
Y.
,
Guillaume
,
S.
, and
Makeev
,
A.
,
2013
, “
Structural Analysis of Composites With Porosity Defects Based on X-Ray Computed Tomography
,”
J. Compos. Mater.
,
48
, pp.
2131
2144
.
12.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
, pp.
2497
2504
.
13.
Kempen
,
K.
,
Yasa
,
E.
,
Thijs
,
L.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2011
, “
Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel
,”
Phys. Proc.
,
12
, pp.
255
263
.
14.
Verein Deutscher Gießereifachleute
,
2002
, “
VDG P 201—Volume Deficits of Non-Ferrous Metal Castings
,”
14
.
15.
Gießereifachleute VD
,
2010
, “
VDG P 202—Volume Deficits of Castings Made From Aluminium, Magnesium, and Zinc Casting Alloys BDG-Reference Sheet
,” pp.
1
24
.
16.
Khademzadeh
,
S.
,
Carmignato
,
S.
,
Parvin
,
N.
,
Zanini
,
F.
, and
Bariani
,
P. F.
,
2016
, “
Micro Porosity Analysis in Additive Manufactured NiTi Parts Using Micro Computed Tomography and Electron Microscopy
,”
Mater. Des.
,
90
, pp.
745
752
.
17.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
, and
Hebenstreit
,
K. M.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
494
528
.
18.
Kastner
,
J.
,
Plank
,
B.
,
Salaberger
,
D.
, and
Sekelja
,
J.
,
2010
, “
Defect and Porosity Determination of Fibre Reinforced Polymers by X-Ray Computed Tomography
,”
2nd International Symposium on NDT in Aerospace 2010—We.1.A.2
,
Hamburg, Germany
,
Nov. 22–24
, pp.
1
12
.
19.
Birt
,
E. A.
, and
Smith
,
R. A.
,
2004
, “
A Review of NDE Methods for Porosity Measurement in Fibre-Reinforced Polymer Composites
,”
Insight—Non-Destruct. Test. Cond. Monit.
,
46
, pp.
681
686
.
20.
Suhot
,
M. A.
,
2010
, “
The Effect of Voids on the Flexural Fatigue Properties of Carbon/Epoxy Composites
,”, Ph.D. Thesis,
University of Southampton
.
21.
Hermanek
,
P.
, and
Carmignato
,
S.
,
2016
, “
Reference Object for Evaluating the Accuracy of Porosity Measurements by X-ray Computed Tomography
,”
Case Stud. Nondestructive Test. Eval.
,
6
, pp.
122
127
.
22.
Hermanek
,
P.
, and
Carmignato
,
S.
,
2017
, “
Porosity Measurements by X-Ray Computed Tomography: Accuracy Evaluation Using a Calibrated Object
,”
Precis. Eng.
,
49
, pp.
377
387
.
23.
Hermanek
,
P.
, and
Carmignato
,
S.
,
2017
, “
Establishment of Metrological Traceability in Porosity Measurements by X-Ray Computed Tomography
,”
Proc. SPIE
,
10391
, p.
103910N
.
24.
Khademzadeh
,
S.
,
Zanini
,
F.
,
Bariani
,
P. F.
, and
Carmignato
,
S.
,
2018
, “
Precision Additive Manufacturing of NiTi Parts Using Micro Direct Metal Deposition
,”
Int. J. Adv. Manuf. Technol.
,
96
, p.
3729
.
25.
Benedetti
,
M.
,
Fontanari
,
V.
,
Bandini
,
M.
,
Zanini
,
F.
, and
Carmignato
,
S.
,
2018
, “
Low- and High-Cycle Fatigue Resistance of Ti-6Al-4V ELI Additively Manufactured Via Selective Laser Melting: Mean Stress and Defect Sensitivity
,”
Int. J. Fatigue
,
107
, pp.
96
109
.
26.
Carmignato
,
S.
,
Dewulf
,
W.
,
Leach
,
R.
,
2017
,
Industrial X-Ray Computed Tomography
,
Springer International Publishing
,
New York
.
27.
Carmignato
,
S.
, and
Savio
,
E.
,
2011
, “
Traceable Volume Measurements Using Coordinate Measuring Systems
,”
CIRP Ann. Manuf. Technol.
,
60
, pp.
519
522
.
28.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML
,
2008
, “
JCGM 100:2008 Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
.”
29.
ISO 15530-3:2011
,
2011
,
Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement—Part 3: Use of Calibrated Workpieces or Measurement Standards
.
International Organization for Standardization
,
Geneva, Switzerland
.
30.
VDI/VDE 2630 Part 2.1:2015
,
2015
, “
Computed Tomography in Dimensional Measurement—Determination of the Uncertainty of Measurement and Test Process Suitability of Coordinate Measurements Systems With CT Sensors
.”
31.
Zanini
,
F.
, and
Carmignato
,
S.
,
2017
, “
Two-Spheres Method for Evaluating the Metrological Structural Resolution in Dimensional Computed Tomography
,”
Meas. Sci. Technol.
,
28
, p.
114002
.
You do not currently have access to this content.