Conventional machining of Ti6Al4V/TiC composites is a very difficult process, which exhibits a peculiar cutting force pattern where the thrust forces are higher than the tangential forces. This behavior results in rapid tool wear and consequently very short tool life. This study is concerned with describing the reasons for the attendant behavior using experimentally validated 3D finite element simulations and alleviating this behavior via laser assisted machining (LAM). Simulations were conducted using an equivalent homogeneous model (EHM) and a multiscale heterogeneous model (MHM) of the Ti6Al4V/TiC composite. Results showed a good agreement between the tangential forces obtained from experiments, EHM, and MHM for conventional machining and LAM. However, only the MHM was able to successfully predict the unusual high thrust forces. The MHM simulation results showed that the tool/particle interaction along the tool nose region presented the highest resistance due to the high resistance against pushing the TiC particles by the tool into the machined surface. This resistance results from the efficient load transfer capability between the particles and the matrix below the machined surface. When using LAM, the stated resistance was decreased by the reduction in load transfer capability of the Ti6Al4V/TiC workpiece such that the thrust and tangential forces were reduced by 78% and 37%, respectively, according to the MHM simulation. The experimental results showed that the tool wear was improved by 68% by LAM. All the results demonstrated that the MHM successfully captured the underlying machining mechanism of the Ti6Al4V/TiC composites.

References

1.
Abkowitz
,
S.
,
Abkowitz
,
S. M.
,
Fisher
,
H.
, and
Schwartz
,
P. J.
,
2004
, “
CermeTi® Discontinuously Reinforced Ti-Matrix Composites: Manufacturing, Properties, and Applications
,”
JOM
,
56
(
5
), pp.
37
41
.
2.
Huang
,
L.
, and
Geng
,
L
,
2017
,
Discontinuously Reinforced Titanium Matrix Composites
,
Springer
,
Singapore
, pp.
1
15
.
3.
Bejjani
,
R.
,
Balazinski
,
M.
,
Shi
,
B.
,
Attia
,
H.
, and
Kishawy
,
H. A.
,
2011
, “
Machinability and Chip Formation of Titanium Metal Matrix Composites
,”
IJAMS—Int. J. Adv. Manuf. Syst.
,
13
(
1
), pp.
75
90
.
4.
Aramesh
,
M.
,
Attia
,
H. M.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
,
2017
, “
Observation of a Unique Wear Morphology of CBN Inserts During Machining of Titanium Metal Matrix Composites (Ti-MMCs); Leading to New Insights into Their Machinability
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
519
530
.
5.
Niknam
,
S. A.
,
Kamalizadeh
,
S.
,
Asgari
,
A.
, and
Balazinski
,
M.
,
2018
, “
Turning Titanium Metal Matrix Composites (Ti-MMCs) With Carbide and CBN Inserts
,”
Int. J. Adv. Manuf. Technol.
,
97
, pp.
253
265
.
6.
Duong
,
X.
,
Balazinski
,
M.
, and
Mayer
,
R.
,
2014
, “
Chaotic Tool Wear During Machining of Titanium Metal Matrix Composite (TiMMCs)
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
, Nov.
14
20
.
7.
Duong
,
X. T.
,
Mayer
,
J. R. R.
, and
Balazinski
,
M.
,
2016
, “
Initial Tool Wear Behavior During Machining of Titanium Metal Matrix Composite (TiMMCs)
,”
Int. J. Refract. Met. Hard Mater.
,
60
, pp.
169
176
.
8.
Aramesh
,
M.
,
Attia
,
M. H.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
,
2016
, “
Estimating the Remaining Useful Tool Life of Worn Tools Under Different Cutting Parameters: A Survival Life Analysis During Turning of Titanium Metal Matrix Composites (Ti-MMCs)
,”
CIRP J. Manuf. Sci. Technol.
,
12
, pp.
35
43
.
9.
Bejjani
,
R.
,
Balazinski
,
M.
,
Attia
,
H.
,
Plamondon
,
P.
, and
L’Éspérance
,
G.
,
2016
, “
Chip Formation and Microstructure Evolution in the Adiabatic Shear Band When Machining Titanium Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
137
146
.
10.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti-6Al-4V) via LAM and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.
11.
Bejjani
,
R.
,
Shi
,
B.
,
Attia
,
H.
, and
Balazinski
,
M.
,
2011
, “
Laser Assisted Turning of Titanium Metal Matrix Composite
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
61
64
.
12.
Bejjani
,
R.
,
2012
, “
Machinability and Modeling of Cutting Mechanism for Titanium Metal Matrix Composites
,” Ph.D. thesis,
Polytechnique Montréal
,
Montreal
.
13.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2007
, “
An FEM Investigation Into the Behavior of Metal Matrix Composites: Tool-Particle Interaction During Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
47
(
10
), pp.
1497
1506
.
14.
Pramanik
,
A.
, and
Zhang
,
L. C.
,
2017
, “
Particle Fracture and Debonding During Orthogonal Machining of Metal Matrix Composites
,”
Adv. Manuf.
,
5
(
1
), pp.
77
82
.
15.
Wang
,
T.
,
Xie
,
L.
, and
Wang
,
X.
,
2015
, “
Simulation Study on Defect Formation Mechanism of the Machined Surface in Milling of High Volume Fraction SiCp/Al Composite
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
1185
1194
.
16.
Zhou
,
L.
,
Cui
,
C.
,
Zhang
,
P. F.
, and
Ma
,
Z. Y.
,
2017
, “
Finite Element and Experimental Analysis of Machinability During Machining of High-Volume Fraction SiCp/Al Composites
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
1935
1944
.
17.
Teng
,
X.
,
Huo
,
D.
,
Chen
,
W.
,
Wong
,
E.
,
Zheng
,
L.
, and
Shyha
,
I.
,
2018
, “
Finite Element Modelling on Cutting Mechanism of Nano Mg/SiC Metal Matrix Composites Considering Cutting Edge Radius
,”
J. Manuf. Process.
,
32
, pp.
116
126
.
18.
Teng
,
X.
,
Huo
,
D.
,
Shyha
,
I.
,
Chen
,
W.
, and
Wong
,
E.
,
2018
, “
An Experimental Study on Tool Wear Behaviour in Micro Milling of Nano Mg/Ti Metal Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2127
2140
.
19.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2011
, “
Molecular Dynamics Based Cohesive Zone Law for Describing Al-SiC Interface Mechanics
,”
Compos. Part A Appl. Sci. Manuf.
,
42
(
4
), pp.
355
363
.
20.
Elkhateeb
,
M. G.
, and
Shin
,
Y. C.
,
2018
, “
Molecular Dynamics-Based Cohesive Zone Representation of Ti6Al4V/TiC Composite Interface
,”
Mater. Des.
,
155
, pp.
161
169
.
21.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2012
, “
Modeling of Machining of Composite Materials: A Review
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
102
121
.
22.
Zhang
,
L.
,
Zhao
,
H.
,
Guo
,
W.
,
Ma
,
Z.
, and
Wang
,
X.
,
2014
, “
Quasicontinuum Analysis of the Effect of Tool Geometry on Nanometric Cutting of Single Crystal Copper
,”
Optik (Stuttg)
,
125
(
2
), pp.
682
687
.
23.
Han
,
X.
,
2018
, “
Investigate the Initialization of Materials Removal and Deformation in Single Point Diamond Fly Cutting Technique Using Multiscale Method
,”
AIP Adv.
,
8
(
7
), pp.
075205
.
24.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2009
, “
Laser-Assisted Machining of a Fiber Reinforced Metal Matrix Composite
,”
ASME. Int. Manuf. Sci. Eng. Conf.
,
2
, pp.
579
588
.
25.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Scale Modeling to Predict Sub-Surface Damage Applied to Laser-Assisted Machining of a Particulate Reinforced Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
153
160
.
26.
Ghandehariun
,
A.
,
Kishawy
,
H. A.
,
Umer
,
U.
, and
Hussein
,
H. M.
,
2016
, “
Analysis of Tool-Particle Interactions During Cutting Process of Metal Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
143
152
.
27.
Ghandehariun
,
A.
,
Nazzal
,
M.
,
Kishawy
,
H. A.
, and
Umer
,
U.
,
2017
, “
On Modeling the Deformations and Tool-Workpiece Interactions during Machining Metal Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
1507
1516
.
28.
Li
,
L.
,
Wang
,
J.
,
Lin
,
P.
, and
Liu
,
H.
,
2017
, “
Microstructure and Mechanical Properties of Functionally Graded TiCp/Ti6Al4V Composite Fabricated by Laser Melting Deposition
,”
Ceram. Int.
,
43
(
18
), pp.
16638
16651
.
29.
Tian
,
Y.
, and
Shin
,
Y. C.
,
2006
, “
Thermal Modeling for Laser-Assisted Machining of Silicon Nitride Ceramics With Complex Features
,”
J. Manuf. Sci. Eng.
,
128
(
2
), pp.
425
434
.
30.
Kollạ́r
,
L. P.
, and
Springer
,
G. S.
,
2003
,
Mechanics of Composite Structures
,
Cambridge University Press
,
Cambridge
, pp.
436
452
.
31.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead
,
Cambridge
.
32.
Boyer
,
R.
,
Collings
,
E. W.
, and
Welsch
,
G.
,
2007
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
33.
Pierson
,
H. O.
,
1996
,
Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications
,
Noyes
,
Westwood
.
34.
Kida
,
M.
,
Weber
,
L.
,
Monachon
,
C.
, and
Mortensen
,
A.
,
2011
, “
Thermal Conductivity and Interfacial Conductance of AlN Particle Reinforced Metal Matrix Composites
,”
J. Appl. Phys.
,
109
(
6
), pp.
064907(1–8)
.
35.
Anderson
,
M.
,
Patwa
,
R.
, and
Shin
,
Y. C.
,
2006
, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1879
1891
.
36.
Third Wave Systems, Inc.
,
2016
, “
AdvantEdge™ FEM 7.3 User’s Manual
,”
Minneapolis
.
37.
Song
,
W.
,
Ning
,
J.
,
Mao
,
X.
, and
Tang
,
H.
,
2013
, “
A Modified Johnson–Cook Model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
576
, pp.
280
289
.
38.
Dassault Systèmes
,
2016
, Abaqus 6.17 Documentation.
39.
Tian
,
Y.
, and
Shin
,
Y. C.
,
2006
, “
Multiscale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining
,”
ASME. J. Manuf. Sci. Eng.
,
129
(
2
), pp.
287
295
.
40.
Hammer
,
J. T.
,
2012
, “
Plastic Deformation and Ductile Fracture of Ti-6Al-4V Under Various Loading Conditions
,” M.Sc. Thesis,
Ohio State University
,
Colombus, OH
.
You do not currently have access to this content.