Titanium alloy Ti-6Al-4V, an alpha-beta alloy, possesses ductile deformation behavior and offers advantageous properties, light weight but high strength, good resilience, and resistance to corrosion, becoming highly suitable for aerospace and biomedical applications. However, its machinability is still considered a limiting factor in improving productivity. This paper presents a finite element modeling methodology for orthogonal cutting titanium alloy Ti-6Al-4V by considering material constitutive modeling together with material ductile failure in combination with damage initiation and cumulative damage-based evolution to simulate not only ductile material separation from workpiece to form chips but also chip serration mechanism by applying an elastic–viscoplastic formulation. The finite element model is further verified with orthogonal cutting experiments (using both uncoated and TiAlN-coated carbide tools) by comparing simulated and acquired forces and simulated and captured chip images at high cutting speeds. The effects of cutting speed, feed, tool rake angle, and tool coating on the degree of chip serration are studied through the simulation results. The cutting temperature and strain distributions are obtained to study the chip serration mechanism under different cutting conditions. It is confirmed that the material failure, crack initiation, and damage evolution are of great significance in the chip serration in cutting titanium alloy Ti-6Al-4V.

References

References
1.
Yang
,
X.
, and
Richard
,
L. C.
,
1999
, “
Machining Titanium and Its Alloys
,”
Mach. Sci. Technol.
,
3
(
1
), pp.
107
139
.
2.
Ezugwu
,
E. O.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
3.
Velásquez
,
J. D. P.
,
Tidu
,
A.
,
Bolle
,
B.
,
Chevrier
,
P.
, and
Fundenberger
,
J.-J.
,
2010
, “
Sub-Surface and Surface Analysis of High Speed Machined Ti–6Al–4V Alloy
,”
Mater. Sci. Eng.: A
,
527
(
10–11
), pp.
2572
2578
.
4.
Ginting
,
A.
, and
Nouari
,
M.
,
2009
, “
Surface Integrity of Dry Machined Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
3–4
), pp.
325
332
.
5.
Arrazola
,
P. J.
,
Garay
,
A.
,
Iriarte
,
L. M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Le Maître
,
F.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555.3)
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2223
2230
.
6.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti–6Al–4V Titanium Alloy–Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
37
43
.
7.
Gente
,
A.
,
Hoffmeister
,
H. W.
, and
Evans
,
C. J.
,
2001
, “
Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds
,”
CIRP Ann.-Manuf. Technol.
,
50
(
1
), pp.
49
52
.
8.
Su
,
G.
,
Liu
,
Z.
,
Li
,
L.
, and
Wang
,
B.
,
2015
, “
Influences of Chip Serration on Micro-Topography of Machined Surface in High-Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
202
207
.
9.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation when Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
10.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
2995
3010
.
11.
Bäker
,
M.
,
2003
, “
An Investigation of the Chip Segmentation Process using Finite Elements
,” ,
23
(
1
), pp.
1
9
.
12.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
13.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
),
081001
.
14.
Wang
,
B.
, and
Liu
,
Z.
,
2016
, “
Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4V
,”
Mater. Des.
,
98
, pp.
68
78
.
15.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti–6Al–4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
16.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
17.
Wang
,
B.
, and
Liu
,
Z.
,
2014
, “
Serrated Chip Formation Mechanism based on Mixed Mode of Ductile Fracture and Adiabatic Shear
,”
Proc. Inst. Mech. Eng. Part B
,
228
(
2
), pp.
181
190
.
18.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2014
, “
Numerical Contribution to the Comprehension of Saw-Toothed Ti6Al4V Chip Formation in Orthogonal Cutting
,”
Int. J. Mech. Sci.
,
81
, pp.
77
87
.
19.
Chen
,
G.
,
Ren
,
C.
,
Yang
,
X.
,
Jin
,
X.
, and
Guo
,
T.
,
2011
, “
Finite Element Simulation of High-Speed Machining of Titanium Alloy (Ti-6Al-4V) Based on Ductile Failure Model
,”
Int. J. Adv. Manuf. Technol.
,
56
(
9–12
), pp.
1027
1038
.
20.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Role of Phase Transformation in Chip Segmentation During High Speed Machining of Dual Phase Titanium Alloys
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3048
3066
.
21.
Wang
,
B.
, and
Liu
,
Z.
,
2015
, “
Shear Localization Sensitivity Analysis for Johnson–Cook Constitutive Parameters on Serrated Chips in High Speed Machining of Ti6Al4V
,”
Simul. Model. Pract. Theory
,
55
, pp.
63
76
.
22.
Jaspers
,
S.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.
23.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
High-Temperature Deformation Behaviour of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests
,”
J. Mater. Process. Technol.
,
75
(
1–3
), pp.
127
136
.
24.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti–6Al–4V at High Temperatures Measured using the SHPB Technique
,”
Int. J. Impact Eng.
,
31
(
6
), pp.
735
754
.
25.
Özel
,
T.
, and
Zeren
,
E.
,
2006
, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
119
129
.
26.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M. A.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools Manuf.
,
42
(
12
), pp.
1373
1383
.
27.
Johnson
,
G.-R.
, and
Cook
,
W.-H.
,
1983
, “
A Constitutive Model for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
Hague, The Netherlands
, Vol.
54
, pp.
1
7
.
28.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, “
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theor. Appl. Mech.
,
9
, pp.
359
376
.
29.
Maekawa
,
K.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1983
, “
Flow Stress of Low Carbon Steel at High Temperature and Strain Rate (Part 2)
,”
Bull. Jpn. Soc. Precis. Eng.
,
17
(
3
), pp.
167
172
.
30.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Woodbury
,
K. A.
,
2006
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
749
759
.
31.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti–6Al–4V Alloy Loaded with High Strain Rate under Various Temperatures
,”
Mater. Sci. Eng.: A
,
241
(
1–2
), pp.
48
59
.
32.
Meyer
,
H. W.
, Jr.
, and
Kleponis
,
D. S.
,
2001
, “
Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration
,”
Int. J. Impact Eng.
,
26
(
1–10
), pp.
509
521
.
33.
Kay
,
G.
,
2002
, “Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum With the Johnson-Cook Material Model,”,
Lawrence Livermore National Laboratory
,
Livermore, CA
Technical Report, DOT/FAA/AR-03/57.
34.
Wang
,
Q.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
, and
Wan
,
Y.
,
2016
, “
Evolutions of Grain Size and Micro-Hardness During Chip Formation and Machined Surface Generation for Ti-6Al-4V in High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1725
1736
.
35.
Childs
,
T. H. C.
,
Arrazola
,
P. J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
.
36.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.
37.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
38.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1989
, “Test Data and Computational Strength and Fracture Model Constants for 23 Materials Subjected to Large Strains, High Strain Rates, and High Temperatures,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Report No. LA-11463-MS.
39.
Li
,
A.
,
Pang
,
J.
,
Zhao
,
J.
,
Zang
,
J.
, and
Wang
,
F.
,
2017
, “
FEM-Simulation of Machining Induced Surface Plastic Deformation and Microstructural Texture Evolution of Ti-6Al-4V Alloy
,”
Int. J. Mech. Sci.
,
123
, pp.
214
223
.
You do not currently have access to this content.