This study investigated the grinding force in rotational atherectomy, a clinical procedure that uses a high-speed grinding wheel to remove hardened, calcified plaque inside the human arteries. The grinding force, wheel motion, and ground surface were measured based on a ring-shape bovine bone surrogate for the calcified plaque. At 135,000, 155,000, and 175,000 rpm wheel rotational speed, the grinding forces were 1.84, 1.92, and 2.22 N and the wheel orbital speeds were 6060, 6840, and 7800 rpm, respectively. The grinding wheel was observed to bounce on the wall of the bone surrogate, leaving discrete grinding marks. Based on this observation, we modeled the grinding force in two components: impact and cutting forces. The impact force between the grinding wheel and the bone surrogate was calculated by the Hertz contact model. A multigrain smoothed particle hydrodynamics (SPH) model was established to simulate the cutting force. The grinding wheel model was built according to the wheel surface topography scanned by a laser confocal microscope. The workpiece was modeled by kinematic-geometrical cutting. The simulation predicted a cutting force of 41, 51, and 99 mN at the three investigated wheel rotational speeds. The resultant grinding forces, combining the impact and cutting forces modeled by the Hertz contact and SPH simulation, matched with the experimental measurements with relative errors less than 10%.

References

1.
Shih
,
A. J.
,
Liu
,
Y.
, and
Zheng
,
Y.
,
2016
, “
Grinding Wheel Motion, Force, Temperature, and Material Removal in Rotational Atherectomy of Calcified Plaque
,”
CIRP Ann. – Manuf. Technol.
,
65
(
1
), pp.
345
348
.
2.
Barbato
,
E.
,
Carrié
,
D.
,
Dardas
,
P.
,
Fajadet
,
J.
,
Gaul
,
G.
,
Haude
,
M.
,
Khashaba
,
A.
,
Koch
,
K.
,
Meyer-Gessner
,
M.
,
Palazuelos
,
J.
,
Reczuch
,
K.
,
Ribichini
,
F. L.
,
Sharma
,
S.
,
Sipötz
,
J.
,
Sjögren
,
I.
,
Suetsch
,
G.
,
Szabó
,
G.
,
Valdés-Chávarri
,
M.
,
Vaquerizo
,
B.
,
Wijns
,
W.
,
Windecker
,
S.
,
de Belder
,
A.
,
Valgimigli
,
M.
,
Byrne
,
R. A.
,
Colombo
,
A.
,
Di Mario
,
C.
,
Latib
,
A.
,
Hamm
,
C.
,
European Association of Percutaneous Cardiovascular Interventions
,
2015
, “
European Expert Consensus on Rotational Atherectomy
,”
EuroIntervention
,
11
(
1
), pp.
30
36
.
3.
Kim
,
M. H.
,
Kim
,
H. J.
,
Kim
,
N. N.
,
Yoon
,
H. S.
, and
Ahn
,
S. H.
,
2011
, “
A Rotational Ablation Tool for Calcified Atherosclerotic Plaque Removal
,”
Biomed. Microdevices
,
13
(
6
), pp.
963
971
.
4.
Nakao
,
M.
,
Tsuchiya
,
K.
,
Maeda
,
W.
, and
Iijima
,
D.
,
2005
, “
A Rotating Cutting Tool to Remove Hard Cemented Deposits in Heart Blood Vessels Without Damaging Soft Vessel Walls
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
37
40
.
5.
Liu
,
Y.
,
Li
,
B.
,
Zheng
,
Y.
, and
Shih
,
A.
,
2017
, “
Experiment and Smooth Particle Hydrodynamics Simulation of Debris Size in Grinding of Calcified Plaque in Atherectomy
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
325
238
.
6.
Reisman
,
M.
,
Shuman
,
B. J.
,
Dillar
,
D.
,
Fei
,
R.
,
Misser
,
K. H.
,
Gordon
,
L. S.
, and
Harms
,
V.
,
1998
, “
Analysis of Low-Speed Rotational Atherectomy for the Reduction of Platelet Aggregation
,”
Catheter. Cardiovas. Diagn.
,
45
(
2
), pp.
208
214
.
7.
Liu
,
Y.
,
Li
,
B.
,
Kong
,
L.
,
Liu
,
Y.
, and
Zheng
,
Y.
,
2018
, “
Experimental and Modeling Study of Temperature in Calcified Plaque Grinding
,”
Int. J. Adv. Manuf. Technol.
, 99, pp.
1013
1021
.
8.
Rüttimann
,
N.
,
Roethlin
,
M.
,
Buhl
,
S.
, and
Wegener
,
K.
,
2013
, “
Simulation of Hexa-Octahedral Diamond Grain Cutting Tests Using the SPH Method
,”
Procedia CIRP
,
8
, pp.
322
327
.
9.
Liu
,
Y.
,
Li
,
B.
,
Wu
,
C.
, and
Zheng
,
Y.
,
2016
, “
Simulation-Based Evaluation of Surface Micro-Cracks and Fracture Toughness in High-Speed Grinding of Silicon Carbide Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1
), pp.
799
708
.
10.
Liu
,
Y.
,
Li
,
B.
,
Wu
,
C.
,
Kong
,
L.
, and
Zheng
,
Y.
,
2018
, “
Smoothed Particle Hydrodynamics Simulation and Experimental Analysis of SiC Ceramic Grinding Mechanism
,”
Ceram. Int.
,
44
(
11
), pp.
12194
12203
.
11.
Cao
,
J.
,
Wu
,
Y.
,
Li
,
J.
, and
Zhang
,
Q.
,
2016
, “
Study on the Material Removal Process in Ultrasonic-Assisted Grinding of SiC Ceramics Using Smooth Particle Hydrodynamic (SPH) Method
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5
), pp.
985
994
.
12.
Shen
,
R. D.
,
Wang
,
X. M.
, and
Yang
,
C. H.
,
2014
, “
Numerical Simulation of High Speed Single-Grain Cutting Using a Coupled FE-SPH Approach
,”
Appl. Mech. Mater.
,
483
, pp.
3
8
.
13.
Su
,
C.
,
Ding
,
J. M.
, and
Zhu
,
L. D.
,
2011
, “
Simulation Research on Cutting Process of Single Abrasive Grain Based on FEM and SPH Method
,”
Adv. Mater. Res.
,
186
, pp.
353
357
.
14.
Rüttimann
,
N.
,
Buhl
,
S.
, and
Wegener
,
K.
,
2010
, “
Simulation of Single Grain Cutting Using SPH Method
,”
J. Mach. Eng.
,
10
(
3
), pp.
17
29
.
15.
Shen
,
R. D.
,
Wang
,
X. M.
, and
Yang
,
C. H.
,
2014
, “
Coupled FE-SPH Simulation of a High-Speed Grinding Process Using a Multiple-Grain Model
,”
Adv. Mater. Res.
,
989
, pp.
3248
3251
.
16.
Eder
,
S. J.
,
Cihak-Bayr
,
U.
, and
Pauschitz
,
A.
,
2015
, “
Nanotribological Simulations of Multi-Grit Polishing and Grinding
,”
Wear
,
340
, pp.
25
30
.
17.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2016
,
Contact Force Models for Multibody Dynamics
,
Springer
,
Dordrecht, Netherlands
.
18.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
,
Uhlmann
,
E.
,
Weinert
,
K.
, and
Wittmann
,
M.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
667
696
.
19.
Dodge
,
J. T.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.
20.
Zheng
,
Y.
,
Liu
,
Y.
,
Pitre
,
J. J.
,
Bull
,
J. L.
,
Gurm
,
H. S.
, and
Shih
,
A. J.
,
2018
, “
Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy With Particle Image Velocimetry Validation
,”
Ann. Biomed. Eng.
,
46
(
4
), pp.
567
578
.
21.
Szabó
,
M. E.
,
Taylor
,
M.
, and
Thurner
,
P. J.
,
2011
, “
Mechanical Properties of Single Bovine Trabeculae Are Unaffected by Strain Rate
,”
J. Biomech.
,
44
(
5
), pp.
962
967
.
22.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
,
1974
, “
The Response of Compact Bone in Tension at Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
(
2
), pp.
217
225
.
You do not currently have access to this content.