Additive manufacturing (AM) is based on layer-by-layer addition of materials. It gives design flexibility and potential to decrease costs and manufacturing lead time. Because the AM process involves incremental deposition of materials, it provides unique opportunities to investigate the material quality as it is deposited. Development of in situ monitoring methodologies is a vital part of the assessment of process performance and understanding of defects formation. In situ process monitoring provides the capability for early detection of process faults and defects. Due to the sensitivity of AM processes to different factors such as laser and material properties, any changes in aspects of the process can potentially have an impact on the part quality. As a result, in-process monitoring of AM is crucial to assure the quality, integrity, and safety of AM parts. There are various sensors and techniques that have been used for in situ process monitoring. In this work, acoustic signatures were used for in situ monitoring of the metal direct energy deposition (DED) AM process operating under different process conditions. Correlations were demonstrated between metrics and various process conditions. Demonstrated correlation between the acoustic signatures and the manufacturing process conditions shows the capability of acoustic technique for in situ monitoring of the additive manufacturing process. To identify the different process conditions, a new approach of K-means statistical clustering algorithm is used for the classification of different process conditions, and quantitative evaluation of the classification performance in terms of cohesion and isolation of the clusters. The identified acoustic signatures, quantitative clustering approach, and the achieved classification efficiency demonstrate potential for use in in situ acoustic monitoring and quality control for the additive manufacturing process.

References

1.
Leino
,
M.
,
Pekkarinen
,
J.
, and
Soukka
,
R.
,
2016
, “
The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing—Enabling Circular Economy
,”
Phys. Procedia
,
83
, pp.
752
760
.
2.
Taheri
,
H.
,
Shoaib
,
M. R. M.
,
Koester
,
L. W.
,
Bigelow
,
T. A.
,
Collins
,
P. C.
, and
Bond
,
L. J.
,
2017
, “
Powder Based Additive Manufacturing—A Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology
,”
Int. J. Addit. Subtractive Mater. Manuf.
,
1
(
2
), pp.
172
209
.
3.
Mehrabi
,
A. B.
, and
Farhangdoust
,
S.
,
2018
, “
A Laser-Based Non-Contact Vibration Technique for Health Monitoring of Structural Cables; Background, Success, and New Developments
,”
Adv. Acoust. Vib.
,
2018
, pp.
1
13
.
4.
Tashakori
,
S.
,
Baghalian
,
A.
,
Senyurek
,
V. Y.
,
Farhangdoust
,
S.
,
Mcdaniel
,
D.
, and
Tansel
,
I. N.
,
2018
, “
Composites Bond Inspection Using Heterodyne Effect and SuRE Methods
,”
Shock Vib.
,
2018
, pp.
1
7
.
5.
Taheri
,
H.
,
2017
, “
Classification of Nondestructive Inspection Techniques With Principal Component Analysis (PCA) for Aerospace Application
,”
ASNT 26th Research Symposium
,
Jacksonville, FL
,
Mar, 13–16
, pp.
219
227
.
6.
Koester
,
L.
,
Taheri
,
H.
,
Bond
,
L. J.
,
Barnard
,
D.
, and
Gray
,
J.
,
2016
, “
Additive Manufacturing Metrology: State of the Art and Needs Assessment
,”
AIP Conf. Proc. 1706
,
130001
.
7.
Hirsch
,
M.
,
Patel
,
R.
,
Li
,
W.
,
Guan
,
G.
,
Leach
,
R. K.
,
Sharples
,
S. D.
, and
Clare
,
A. T.
,
2017
, “
Assessing the Capability of In-Situ Nondestructive Analysis During Layer Based Additive Manufacture
,”
Addit. Manuf.
,
13
, pp.
135
142
.
8.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2016
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), pp.
51001
51016
.
9.
Dunsky
,
C.
,
2014
, “
Process Monitoring in Laser Additive Manufacturing
,”
Industrial Laser Solutions
, December.
10.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5
), pp.
601
610
.
11.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
.
12.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
13.
Chua
,
Z. Y.
,
Ahn
,
I. H.
, and
Moon
,
S. K.
,
2017
, “
Process Monitoring and Inspection Systems in Metal Additive Manufacturing: Status and Applications
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
4
(
2
), pp.
235
245
.
14.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
),
44005
.
15.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1089
1101
.
16.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J. P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.
17.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), pp.
101009
101014
.
18.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M. F.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference,
Aug. 6–8
,
University of Texas
,
TX
, pp.
999
1014
.
19.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
),
3602
.
20.
Rieder
,
H.
,
Dillhöfer
,
A.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Hess
,
T.
,
2014
, “
Online Monitoring of Additive Manufacturing Processes Using Ultrasound
,”
Proceedings of the 11th European Conference on Non-Destructive Testing
,
Prague, Czech Republic
,
Oct. 6–10
, Vol.
1
, pp.
2194
2201
.
21.
Gaja
,
H.
, and
Liou
,
F.
,
2016
, “
Defects Monitoring of Laser Metal Deposition Using Acoustic Emission Sensor
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
561
574
.
22.
Addison
,
R. C.
,
McKie
,
A. D. W.
,
Liao
,
T.-L. T.
, and
Ryang
,
H.-S.
,
1992
, “
In Situ Process Monitoring Using Laser-Based Ultrasound
,”
IEEE Ultrasonics Symposium Proceedings
,
Tucson, AZ
,
Oct. 20–23
,
IEEE
,
New York
, pp.
783
786
.
23.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-Ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
),
72001
.
24.
Wu
,
H.
,
Yu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Real-Time FDM Machine Condition Monitoring and Diagnosis based on Acoustic Emission and Hidden Semi-Markov Model
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5
), pp.
2027
2036
.
25.
Rogers
,
L. M.
,
1979
, “
The Application of Vibration Signature Analysis and Acoustic Emission Source Location to On-Line Condition Monitoring of Anti-Friction Bearings
,”
Tribol. Int.
,
12
, pp.
51
59
.
26.
Nikravesh
,
S. M. Y.
,
Taheri
,
H.
, and
Wagstaff
,
P.
,
2013
, “
Identification of Appropriate Wavelet for Vibration Study of Mechanical Impacts
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) Volume 14: Vibration, Acoustics and Wave Propagation
,
San Diego, CA, United States, V014T15A022
.
27.
Yadavar Nikravesh
,
S. M.
, and
Taheri
,
H.
,
2018
, “
Onset of Nucleate Boiling Detection in a Boiler Tube by Wavelet Transformation of Vibration Signals
,”
J. Nondestruct. Eval. Diagnostics Progn. Eng. Syst.
,
1
(
3
), pp.
31005
31007
.
28.
Grondel
,
S.
,
Delebarre
,
C.
,
Assaad
,
J.
,
Dupuis
,
J. P.
, and
Reithler
,
L.
,
2002
, “
Fatigue Crack Monitoring of Riveted Aluminium Strap Joints by Lamb Wave Analysis and Acoustic Emission Measurement Techniques
,”
NDT E Int.
,
35
(
3
), pp.
137
146
.
29.
Behrens
,
B.-A.
,
Santangelo
,
A.
, and
Buse
,
C.
,
2013
, “
Acoustic Emission Technique for Online Monitoring During Cold Forging of Steel Components: A Promising Approach for Online Crack Detection in Metal Forming Processes
,”
Prod. Eng.
,
7
(
4
), pp.
423
432
.
30.
Arul
,
S.
,
Vijayaraghavan
,
L.
, and
Malhotra
,
S. K.
,
2007
, “
Online Monitoring of Acoustic Emission for Quality Control in Drilling of Polymeric Composites
,”
J. Mater. Process. Technol.
,
185
(
1–3
), pp.
184
190
.
31.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), pp.
111001
111019
.
32.
Coates
,
P. D.
,
Barnes
,
S. E.
,
Sibley
,
M. G.
,
Brown
,
E. C.
,
Edwards
,
H. G. M.
, and
Scowen
,
I. J.
,
2003
, “
In-Process Vibrational Spectroscopy and Ultrasound Measurements in Polymer Melt Extrusion
,”
Polymer (Guildf).
,
44
(
19
), pp.
5937
5949
.
33.
NIST
,
2013
, “
NIST-Report on Measurement Science Roadmap for Metal Based Additive Manufacturing
”.
34.
Landau
,
S.
, and
Chis Ster
,
I.
,
2010
, “
Cluster Analysis: Overview
,”
Int. Encycl. Educ.
, pp.
72
83
.
35.
Malekipour
,
E.
, and
El-Mounayri
,
H.
,
2018
, “
Defects, Process Parameters and Signatures for Online Monitoring and Control in Powder-Based Additive Manufacturing
,”
Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer
,
New York
, pp.
83
90
.
36.
Koester
,
L. W.
,
Taheri
,
H.
,
Bigelow
,
T. A.
,
Bond
,
L. J.
, and
Faierson
,
E. J.
,
2018
, “
In-Situ Acoustic Signature Monitoring in Additive Manufacturing Processes
,”
AIP Conf. Proc.
,
1949
,
020006
.
37.
Kozhisseri
,
S.
, and
Bikdash
,
M.
,
2009
, “
Spectral Features for the Classification of Civilian Vehicles using Acoustic Sensors
,”
IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems
,
Nashville, TN
,
IEEE
,
New York
, pp.
93
100
.
38.
Ludeña-Choez
,
J.
, and
Gallardo-Antolín
,
A.
,
2016
, “
Acoustic Event Classification Using Spectral Band Selection and Non-Negative Matrix Factorization-based Features
,”
Expert Syst. Appl.
,
46
(Suppl. C), pp.
77
86
.
39.
Proakis
,
J. G.
, and
Manolakis
,
D. G.
,
1996
,
Digital Signal Processing: Principles, Algorithms, and Applications
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Ulrych
,
T.
,
1971
, “
Application of Homomorphic Deconvolution to Seismology
,”
Geophysics
,
36
(
4
), pp.
650
660
.
41.
Merla
,
C.
,
Paffi
,
A.
,
Apollonio
,
F.
,
Orcioni
,
S.
, and
Liberti
,
M.
,
2017
, “
Portable System for Practical Permittivity Measurements Improved by Homomorphic Deconvolution
,”
IEEE Trans. Instrum. Meas.
,
66
(
3
), pp.
514
521
.
42.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1989
,
Discrete Time Signal Processing
,
Prentice-Hall
,
London
.
43.
Jung
,
Y. G.
,
Kang
,
M. S.
, and
Heo
,
J.
,
2014
, “
Clustering Performance Comparison using K-means and Expectation Maximization Algorithms
,”
Biotechnol. Biotechnol. Equip.
,
28
(
suppl. 1
), pp.
S44
S48
.
44.
Koester
,
L. W.
,
Taheri
,
H.
,
Bigelow
,
T. A.
,
Collins
,
P. C.
, and
Bond
,
L. J.
,
2018
, “
Nondestructive Testing for Metal Parts Fabricated using Powder-Based Additive Manufacturing
,”
Mater. Eval.
,
76
(
4
), pp.
514
524
.
45.
Zanon
,
M.
,
Susto
,
G. A.
, and
McLoone
,
S.
,
2014
, “
Root Cause Analysis by a Combined Sparse Classification and Monte Carlo Approach
,”
IFAC Proc.
,
19
, pp.
1947
1952
.
46.
Guo
,
H.
,
Paynabar
,
K.
, and
Jin
,
J.
,
2012
, “
Multiscale Monitoring of Autocorrelated Processes Using Wavelets Analysis
,”
IIE Trans. (Institute Ind. Eng.)
,
44
(
4
), pp.
312
326
.
47.
Barga
,
R. S.
,
Friesel
,
M. A.
,
Melton
,
R. B.
,
Friesel
,
M. A.
, and
Melton
,
R. B.
,
1990
, “
Classification of Acoustic Emission Waveforms for Nondestructive Evaluation using Neural Networks
,”
SPIE International Symposium on Optical Engineering and Photonics in Aerospace Sensing in the Applications of Artificial Neural Networks
,
Orlando, FL, United States
, Vol.
1294
, pp.
545
556
.
48.
Alexander
,
F. J.
, and
Lookman
,
T.
,
2013
, “Novel Approaches to Statistical Learning in Materials Science,”
Informatics for Materials Science and Engineering
,
K.
Rajan
, ed.,
Butterworth-Heinemann, Elsevier
,
London
, pp.
37
51
.
You do not currently have access to this content.