Calibration is an important way to improve and guarantee the accuracy of machine tools. This paper presents a systematic approach for position independent geometric errors (PIGEs) calibration of five-axis machine tools based on the product of exponentials (POE) formula. Instead of using 4 × 4 homogeneous transformation matrices (HTMs), it establishes the error model by transforming the 6 × 1 error vectors of rigid bodies between different frames resorting to 6 × 6 adjoint transformation matrices. A stable and efficient error model for the iterative identification of PIGEs should satisfy the requirements of completeness, continuity, and minimality. Since the POE-based error models for five-axis machine tools calibration are naturally complete and continuous, the key issue is to ensure the minimality by eliminating the redundant parameters. Three kinds of redundant parameters, which are caused by joint symmetry information, tool-workpiece metrology, and incomplete measuring data, are illustrated and explained in a geometrically intuitive way. Hence, a straightforward process is presented to select the complete and minimal set of PIGEs for five-axis machine tools. Based on the established unified and compact error Jacobian matrices, observability analyses which quantitatively describe the identification efficiency are conducted and compared for different kinds of tool tip deviations obtained from several commonly used measuring devices, including the laser tracker, R-test, and double ball-bar. Simulations are conducted on a five-axis machine tool to illustrate the application of the calibration model. The effectiveness of the model is also verified by experiments on a five-axis machine tool by using a double ball-bar.

References

1.
Ibaraki
,
S.
,
Kimura
,
Y.
,
Nagai
,
Y.
, and
Nishikawa
,
S.
,
2015
, “
Formulation of Influence of Machine Geometric Errors on Five-Axis On-Machine Scanning Measurement by Using a Laser Displacement Sensor
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021013
.
2.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
660
675
.
3.
Lee
,
D. M.
,
Zhu
,
Z.
,
Lee
,
K. I.
, and
Yang
,
S. H.
,
2011
, “
Identification and Measurement of Geometric Errors for a Five-Axis Machine Tool With a Tilting Head Using a Double Ball-Bar
,”
Int. J. Precis. Eng. Manuf.
,
12
(
2
), pp.
337
343
.
4.
Abbaszadeh-Mir
,
Y.
,
Mayer
,
J. R. R.
,
Cloutier
,
G.
, and
Fortin
,
C.
,
2002
, “
Theory and Simulation for the Identification of the Link Geometric Errors for a Five-Axis Machine Tool Using a Telescoping Magnetic Ball-Bar
,”
Int. J. Prod. Res.
,
40
(
18
), pp.
4781
4797
.
5.
Chen
,
J. X.
,
Lin
,
S. W.
,
Zhou
,
X. L.
, and
Gu
,
T. Q.
,
2016
, “
A Ballbar Test for Measurement and Identification the Comprehensive Error of Tilt Table
,”
Int. J. Mach. Tools Manuf.
,
103
, pp.
1
12
.
6.
Ibaraki
,
S.
, and
Knapp
,
W.
,
2012
, “
Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review
,”
Int. J. Autom. Technol.
,
6
(
2
), pp.
110
124
.
7.
Creamer
,
J.
,
Sammons
,
P. M.
,
Bristow
,
D. A.
,
Landers
,
R. G.
,
Freeman
,
P. L.
, and
Easley
,
S. J.
,
2017
, “
Table-Based Volumetric Error Compensation of Large Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
),
021011
.
8.
Schroer
,
K.
,
Albright
,
S. L.
, and
Grethlein
,
M.
,
1997
, “
Complete, Minimal and Model-Continuous Kinematic Models for Robot Calibration
,”
Robot. Comput. Integr. Manuf.
,
13
(
1
), pp.
73
85
.
9.
Lamikiz
,
A.
,
López de Lacalle
,
L. N.
,
Ocerin
,
O.
,
Díez
,
D.
, and
Maidagan
,
E.
,
2007
, “
The Denavit and Hartenberg Approach Applied to Evaluate the Consequences in the Tool Tip Position of Geometrical Errors in Five-Axis Milling Centres
,”
Int. J. Adv. Manuf. Technol.
,
37
(
1–2
), pp.
122
139
.
10.
Kong
,
L. B.
,
Cheung
,
C. F.
,
To
,
S.
,
Lee
,
W. B.
,
Du
,
J. J.
, and
Zhang
,
Z. J.
,
2008
, “
A Kinematics and Experimental Analysis of Form Error Compensation in Ultra-Precision Machining
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1408
1419
.
11.
Lin
,
Y.
, and
Shen
,
Y.
,
2003
, “
Modelling of Five-Axis Machine Tool Metrology Models Using the Matrix Summation Approach
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
243
248
.
12.
Fu
,
G.
,
Fu
,
J.
,
Xu
,
Y.
, and
Chen
,
Z.
,
2014
, “
Product of Exponential Model for Geometric Error Integration of Multi-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1653
1667
.
13.
Fu
,
G.
,
Fu
,
J.
,
Shen
,
H.
,
Xu
,
Y.
, and
Jin
,
Y.
,
2015
, “
Product-of-Exponential Formulas for Precision Enhancement of Five-Axis Machine Tools via Geometric Error Modeling and Compensation
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
289
305
.
14.
Xiang
,
S.
, and
Altintas
,
Y.
,
2016
, “
Modeling and Compensation of Volumetric Errors for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
65
78
.
15.
Cheng
,
Q.
,
Feng
,
Q.
,
Liu
,
Z.
,
Gu
,
P.
, and
Zhang
,
G.
,
2015
, “
Sensitivity Analysis of Machining Accuracy of Multi-Axis Machine Tool Based on POE Screw Theory and Morris Method
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2301
2318
.
16.
Cheng
,
Q.
,
Sun
,
B.
,
Liu
,
Z.
,
Feng
,
Q.
, and
Gu
,
P.
,
2018
, “
Geometric Error Compensation Method Based on Floyd Algorithm and Product of Exponential Screw Theory
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
232
(
7
), pp.
1156
1171
.
17.
Lee
,
K. I.
, and
Yang
,
S. H.
,
2013
, “
Robust Measurement Method and Uncertainty Analysis for Position-Independent Geometric Errors of a Rotary Axis Using a Double Ball-Bar
,”
Int. J. Precis. Eng. Manuf.
,
14
(
2
), pp.
231
239
.
18.
Zargarbashi
,
S. H. H.
, and
Mayer
,
J. R. R.
,
2009
, “
Single Setup Estimation of a Five-Axis Machine Tool Eight Link Errors by Programmed End Point Constraint and on the Fly Measurement With Capball Sensor
,”
Int. J. Mach. Tools Manuf.
,
49
(
10
), pp.
759
766
.
19.
Bringmann
,
B.
, and
Knapp
,
W.
,
2006
, “
Model-Based ‘Chase-the-Ball’ Calibration of a 5-Axes Machining Center
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
531
534
.
20.
Hayati
,
S. A.
,
1983
, “
Robot Arm Geometric Link Parameter Estimation
,”
The 22nd IEEE Conference on Decision and Control
,
San Antonio, TX
, pp.
1477
1483
.
21.
Zhuang
,
H.
, and
Roth
,
Z. S.
,
1992
, “
Robot Calibration Using the CPC Error Model
,”
Rob. Comput. Integr. Manuf.
,
9
(
3
), pp.
227
237
.
22.
Aguado
,
S.
,
Samper
,
D.
,
Santolaria
,
J.
, and
Aguilar
,
J. J.
,
2012
, “
Towards an Effective Identification Strategy in Volumetric Error Compensation of Machine Tools
,”
Meas. Sci. Technol.
,
23
(
6
),
065003
.
23.
Wang
,
J.
, and
Guo
,
J.
,
2012
, “
Research on Volumetric Error Compensation for NC Machine Tool Based on Laser Tracker Measurement
,”
Sci. China Technol. Sci.
,
55
(
11
), pp.
3000
3009
.
24.
Wu
,
J.
,
Zhang
,
R.
,
Wang
,
R.
, and
Yao
,
Y.
,
2014
, “
A Systematic Optimization Approach for the Calibration of Parallel Kinematics Machine Tools by a Laser Tracker
,”
Int. J. Mach. Tools Manuf.
,
86
, pp.
1
11
.
25.
Yang
,
X.
,
Wu
,
L.
,
Li
,
J.
, and
Chen
,
K.
,
2014
, “
A Minimal Kinematic Model for Serial Robot Calibration Using POE Formula
,”
Robot. Comput. Integr. Manuf.
,
30
(
3
), pp.
326
334
.
26.
Palmieri
,
G.
,
Palpacelli
,
M. C.
,
Carbonari
,
L.
, and
Callegari
,
M.
,
2018
, “
Vision-Based Kinematic Calibration of a Small-Scale Spherical Parallel Kinematic Machine
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
162
169
.
27.
Filion
,
A.
,
Joubair
,
A.
,
Tahan
,
A. S.
, and
Bonev
,
I. A.
, “
Robot Calibration Using a Portable Photogrammetry System
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
77
87
.
28.
Yang
,
J.
,
Mayer
,
J. R. R.
, and
Altintas
,
Y.
,
2015
, “
A Position Independent Geometric Errors Identification and Correction Method for Five-Axis Serial Machines Based on Screw Theory
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
52
66
.
29.
Qiao
,
Y.
,
Chen
,
Y.
,
Yang
,
J.
, and
Chen
,
B.
,
2017
, “
A Five-Axis Geometric Errors Calibration Model Based on the Common Perpendicular Line (CPL) Transformation Using the Product of Exponentials (POE) Formula
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
49
60
.
30.
Lee
,
K.-I.
, and
Yang
,
S.-H.
,
2013
, “
Measurement and Verification of Position-Independent Geometric Errors of a Five-Axis Machine Tool Using a Double Ball-Bar
,”
Int. J. Mach. Tools Manuf.
,
70
, pp.
45
52
.
31.
Liu
,
Y.
,
Wan
,
M.
,
Xing
,
W. J.
, and
Zhang
,
W. H.
,
2018
, “
Identification of Position Independent Geometric Errors of Rotary Axes for Five-Axis Machine Tools With Structural Restrictions
,”
Robot. Comput. Integr. Manuf.
,
53
, pp.
45
57
.
32.
Weikert
,
S.
,
2004
, “
R-Test, a New Device for Accuracy Measurements on Five Axis Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
429
432
.
33.
Okamura
,
K.
, and
Park
,
F. C.
,
1996
, “
Kinematic Calibration Using the Product of Exponentials Formula
,”
Robotica
,
14
, pp.
415
421
.
34.
He
,
R.
,
Zhao
,
Y.
, and
Yang
,
S.
,
2010
, “
Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula
,”
IEEE Trans. Robot.
,
26
, pp.
411
423
.
35.
Lou
,
Y.
,
Chen
,
T.
,
Wu
,
Y.
,
Li
,
Z.
, and
Jiang
,
S.
,
2009
, “
Improved and Modified Geometric Formulation of POE Based Kinematic Calibration of Serial Robots
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
, pp.
5261
5266
.
36.
Qiao
,
Y.
,
Chen
,
Y. P.
,
Chen
,
B.
, and
Xie
,
J. M.
,
2017
, “
A Novel Calibration Method for Multi-Robots System Utilizing Calibration Model Without Nominal Kinematic Parameters
,”
Precis. Eng.
,
50
, pp.
211
221
.
37.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton
,
FL
.
38.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
,
NY
.
39.
Li
,
C.
,
Wu
,
Y.
,
Lowe
,
H.
, and
Li
,
Z.
,
2016
, “
POE-Based Robot Kinematic Calibration Using Axis Configuration Space and the Adjoint Error Model
,”
IEEE Trans. Robot.
,
32
(
5
), pp.
1264
1279
.
40.
Tian
,
W. J.
,
Yin
,
F. W.
,
Liu
,
H. T.
,
Li
,
J. H.
,
Li
,
Q.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of a 3-DOF Spindle Head Using a Double Ball Bar
,”
Mech. Mach. Theory
,
102
, pp.
167
178
.
41.
Huang
,
T.
,
Chetwynd
,
D. G.
,
Whitehouse
,
D. J.
, and
Wang
,
J. S.
,
2005
, “
A General and Novel Approach for Parameter Identification of 6-DOF Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
40
(
2
), pp.
219
239
.
42.
Chen
,
G. L.
,
Wang
,
H.
, and
Lin
,
Z. Q.
,
2014
, “
Determination of the Identifiable Parameters in Robot Calibration Based on the POE Formula
,”
IEEE Trans. Robot.
,
30
(
5
), pp.
1066
1077
.
43.
Chen
,
G. L.
,
Kong
,
L. Y.
,
Li
,
Q. C.
,
Wang
,
H.
, and
Lin
,
Z. Q.
,
2018
, “
Complete, Minimal and Continuous Error Models for the Kinematic Calibration of Parallel Manipulators Based on POE Formula
,”
Mech. Mach. Theory
,
121
, pp.
844
856
.
44.
Wu
,
L.
,
Yang
,
X. D.
,
Chen
,
K.
, and
Ren
,
H. L.
,
2015
, “
A Minimal POE-Based Model for Robotic Kinematic Calibration With Only Position Measurements
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
2
), pp.
758
763
.
45.
Zhao
,
Y. M.
,
Lin
,
Y.
,
Xi
,
F.
, and
Guo
,
S.
,
2015
, “
Calibration-Based Iterative Learning Control for Path Tracking of Robotic Riveting System
,”
IEEE Trans. Ind. Electron.
,
62
(
5
), pp.
2921
2929
.
46.
Tsutsumi
,
M.
, and
Saito
,
A.
,
2003
, “
Identification and Compensation of Systematic Deviations Particular to 5-Axis Machining Centers
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
771
780
.
47.
Tsutsumi
,
M.
, and
Saito
,
A.
,
2004
, “
Identification of Angular and Positional Deviations Inherent to 5-axis Machining Centers With a Tilting-Rotary Table by Simultaneous Four-Axis Control Movements
,”
Int. J. Mach. Tools Manuf.
,
44
(
12–13
), pp.
1333
1342
.
You do not currently have access to this content.