Conventional single-point incremental forming (SPIF) is already in use for small batch prototyping and fabrication of customized parts from thin sheet metal blanks by inducing plastic deformation with a rigid round-tip tool. The major advantages of the SPIF process are its high flexibility and die-free nature. In lieu of employing a rigid tool to incrementally form the sheet metal, a high-speed water jet as an alternative was proposed as the forming tool. Since there is no tool-workpiece contact in this process, unlike in the traditional SPIF process, no lubricant and rotational motion of the tool are required to reduce friction. However, the geometry of the part formed by water jet incremental microforming (WJIMF) will no longer be controlled by the motion of the rigid tool. On the contrary, process parameters such as water jet pressure, stage motion speed, water jet diameter, blank thickness, and tool path design will determine the final shape of the workpiece. This paper experimentally studies the influence of the above-mentioned key process parameters on the geometry of a truncated cone shape and on the corresponding surface quality. A numerical model is proposed to predict the shape of the truncated cone part after WJIMF with given input process parameters. The results prove that the formed part's geometric properties predicted by the numerical model are in excellent agreement with the actually measured ones. Arrays of miniature dots, channels, two-level truncated cones, and letters were also successfully fabricated on stainless-steel foils to demonstrate WJIMF capabilities.

References

1.
Emmens
,
W. C.
,
Sebastiani
,
G.
, and
van den Boogaard
,
A. H.
,
2010
, “
The Technology of Incremental Sheet Forming-A Brief Review of the History
,”
J. Mater. Process. Tech.
,
210
(
8
), pp.
981
997
.
2.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
Cirp Ann.-Manuf. Technol.
,
54
(
2
), pp.
623
649
.
3.
Micari
,
F.
,
Ambrogio
,
G.
, and
Filice
,
L.
,
2007
, “
Shape and Dimensional Accuracy in Single Point Incremental Forming: State of the Art and Future Trends
,”
J. Mater. Process. Tech.
,
191
(
1-3
), pp.
390
395
.
4.
Filice
,
L.
,
Fratini
,
L.
, and
Micari
,
F.
,
2002
, “
Analysis of Material Formability in Incremental Forming
,”
Cirp Ann.-Manuf. Technol.
,
51
(
1
), pp.
199
202
.
5.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
DeVor
,
R. E.
,
2005
,
International Assessment of Research and Development in Micromanufacturing
,
DTIC Document, World Technology Evaluation Center (WTEC), Inc.
,
Baltimore, MD
.
6.
Ng
,
M. K.
,
Fan
,
Z. Y.
,
Gao
,
R. X.
,
Smith
,
E. F.
, and
Cao
,
J.
,
2014
, “
Characterization of Electrically-Assisted Micro-Rolling for Surface Texturing Using Embedded Sensor
,”
Cirp Ann.-Manuf. Technol.
,
63
(
1
), pp.
269
272
.
7.
Joo
,
B. Y.
,
Rhim
,
S. H.
, and
Oh
,
S. I.
,
2005
, “
Micro-Hole Fabrication by Mechanical Punching Process
,”
J. Mater. Process. Tech.
,
170
(
3
), pp.
593
601
.
8.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H. S.
,
Liu
,
W. K.
, and
Swanson
,
A.
,
2004
, “
Microforming: Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM
,”
J. Manuf. Sci. Eng. Trans. ASME
,
126
(
4
), pp.
642
652
.
9.
Tang
,
Y.
,
Chi
,
Y.
,
Chen
,
J. C.
,
Deng
,
X. X.
,
Liu
,
L.
,
Liu
,
X. K.
, and
Wan
,
Z. P.
,
2007
, “
Experimental Study of Oil-Filled High-Speed Spin Forming Micro-Groove Fin-Inside Tubes
,”
Int. J. Mach. Tool. Manuf.
,
47
(
7-8
), pp.
1059
1068
.
10.
Saotome
,
Y.
, and
Okamoto
,
T.
,
2001
, “
An In-Situ Incremental Microforming System for Three-Dimensional Shell Structures of Foil Materials
,”
J. Mater. Process. Tech.
,
113
(
1-3
), pp.
636
640
.
11.
Obikawa
,
T.
,
Satou
,
S.
, and
Hakutani
,
T.
,
2009
, “
Dieless Incremental Micro-Forming of Miniature Shell Objects of Aluminum Foils
,”
Int. J. Mach. Tool. Manuf.
,
49
(
12–13
), pp.
906
915
.
12.
Sekine
,
T.
, and
Obikawa
,
T.
,
2010
, “
Single Point Micro Incremental Forming of Miniature Shell Structures
,”
J. Adv. Mech. Des. Syst.
,
4
(
2
), pp.
543
557
.
13.
Beltran
,
M.
,
Malhotra
,
R.
,
Nelson
,
A.
,
Bhattacharya
,
A.
,
Reddy
,
N.
, and
Cao
,
J.
,
2013
, “
Experimental Study of Failure Modes and Scaling Effects in Micro-Incremental Forming
,”
J. Micro. Nano-Manuf.
,
1
(
3
),
031005
.
14.
Iseki
,
H.
,
2001
, “
Flexible and Incremental Bulging of Sheet Metal Using High-Speed Water Jet
,”
JSME Int. J. C Mech. Syst. Mach. Elem. Manuf.
,
44
(
2
), pp.
486
493
.
15.
Al-Gharndi
,
K. A.
, and
Hussain
,
G.
,
2015
, “
Corrigendum to: ‘Threshold Tool-Radius Condition Maximizing the Formability in SPIF Considering a Variety of Materials: Experimental and FE Investigations (Vol. 88, p. 82, 2015),’
Int. J. Mach. Tool. Manuf.
,
91
, p.
115
.
16.
Jurisevic
,
B.
,
Kuzman
,
K.
, and
Junkar
,
M.
,
2006
, “
Water Jetting Technology: An Alternative in Incremental Sheet Metal Forming
,”
Int. J. Adv. Manuf. Tech.
,
31
(
1–2
), pp.
18
23
.
17.
Lu
,
B.
,
Cao
,
J.
, and
Ou
,
H
.,
2011
, “
Theoretical and Numerical Analysis of Incremental Sheet Forming by Using High Pressure Water Jet
,”
ASME 2011 International Manufacturing Science and Engineering Conference
, ASME,
Corvallis, OR
, pp.
565
571
.
18.
Lu
,
B.
,
Bazeer
,
M. W. M.
,
Cao
,
J. F.
,
Ai
,
S.
,
Chen
,
J.
,
Ou
,
H.
, and
Long
,
H.
,
2017
, “
A Study of Incremental Sheet Forming by Using Water Jet
,”
Int. J. Adv. Manuf. Tech.
,
91
(
5–8
), pp.
2291
2301
.
19.
Obara
,
T.
,
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
Liquid-Jet Impact on Liquid and Solid-Surfaces
,”
Wear
,
186
(
2
), pp.
388
394
.
20.
Hussain
,
G.
, and
Gao
,
L.
,
2007
, “
A Novel Method to Test the Thinning Limits of Sheet Metals in Negative Incremental Forming
,”
Int. J. Mach. Tool. Manuf.
,
47
(
3–4
), pp.
419
435
.
21.
Voce
,
E.
,
1955
, “
A Practical Strain Hardening Function
,”
Metallurgia
,
51
, pp.
219
226
.
22.
Shi
,
Y.
,
Zhang
,
W.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2019
, “
Experimental Study of Water Jet Incremental Micro-Forming With Supporting Dies
,”
J. Mater. Process. Tech.
,
268
, pp.
117
131
.
You do not currently have access to this content.