The significant advance in the boosted fabrication speed and printing resolution of additive manufacturing (AM) technology has considerably increased the capability of achieving product designs with high geometric complexity and provided tremendous potential for mass customization. However, it is also because of geometric complexity and large quantity of mass-customized products that the prefabrication (layer slicing, path planning, and support generation) is becoming the bottleneck of the AM process due to the ever-increasing computational cost. In this paper, the authors devise an integrated computational framework by synthesizing the parametric level set-based topology optimization method with the stereolithography (SLA)-based AM process for intelligent design and manufacturing of multiscale structures. The topology of the design is optimized with a distance-regularized parametric level set method considering the prefabrication computation. With the proposed framework, the structural topology optimization not only can create single material structure designs but also can generate multiscale, multimaterial structures, offering the flexibility and robustness of the structural design that the conventional methods could not provide. The output of the framework is a set of mask images that can be directly used in the AM process. The proposed approach seamlessly integrates the rational design and manufacturing to reduce the numerical complexity of the computationally expensive prefabrication process. More specifically, the prefabrication-friendly design and optimization procedure are devised to drastically eliminate the redundant computations in the traditional framework. Two test examples, including a free-form 3D cantilever beam and a multiscale meta-structure, are utilized to demonstrate the performance of the proposed approach. Both the simulation and experimental results verified that the new rational design could significantly reduce the prefabrication computation cost without affecting the original design intent or sacrificing the original functionality.

References

References
1.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
2.
Wohlers
,
T.
,
2013
,
Additive Manufacturing and 3D Printing State of the Industry
,
Wohlers Associates
,
Fort Collins, CO
.
3.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York, NY
.
4.
De Berg
,
M.
,
Van Kreveld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O. C.
,
2000
,
Computational Geometry
,
Springer
,
New York, NY
.
5.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,
The University of Texas at Austin
,
Austin, TX
.
6.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
, and
Ermoshkin
,
A.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
, pp.
1349
1352
.
7.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Huachen Cui
,
D. C.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
, and
Weisgraber
,
T.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
, pp.
1100
1106
.
8.
Kwok
,
T.-H.
,
Ye
,
H.
,
Chen
,
Y.
,
Zhou
,
C.
, and
Xu
,
W.
,
2017
, “
Mass Customization: Reuse of Digital Slicing for Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
, 021009.
9.
Wang
,
A.
,
Zhou
,
C.
,
Jin
,
Z.
, and
Xu
,
W.
,
2017
, “
Towards Scalable and Efficient GPU-Enabled Slicing Acceleration in Continuous 3D Printing
,”
22nd Asia and South Pacific Design Automation Conference (ASP-DAC)
,
Chiba/Tokyo, Japan
,
Jan. 16–19
, pp.
623
628
.
10.
Chen
,
Y.
,
2007
, “
3D Texture Mapping for Rapid Manufacturing
,”
Comput. Aided Des. Appl.
,
4
, pp.
761
771
.
11.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, pp.
543
557
.
12.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Process.
,
14
, pp.
107
118
.
13.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidisciplinary Opt.
,
48
, pp.
1031
1055
.
14.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
.
15.
Lazarov
,
B. S.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2016
, “
Length Scale and Manufacturability in Density-Based Topology Optimization
,”
Arch. Appl. Mech.
,
86
, pp.
189
218
.
16.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization-Theory, Methods, and Applications
,
Springer
,
Berlin
.
17.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
227
246
.
18.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
, pp.
363
393
.
19.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
348
362
.
20.
Zhang
,
P.
,
Liu
,
J.
, and
To
,
A. C.
,
2017
, “
Role of Anisotropic Properties on Topology Optimization of Additive Manufactured Load Bearing Structures
,”
Scr. Mater.
,
135
, pp.
148
152
.
21.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
22.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscipl Opt.
,
54
, pp.
1157
1172
.
23.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
24
, pp.
1127
1140
.
24.
Merriman
,
B.
,
Bence
,
J. K.
, and
Osher
,
S. J.
,
1994
, “
Motion of Multiple Junctions: A Level Set Approach
,”
J. Comput. Phys.
,
112
, pp.
334
363
.
25.
Sethian
,
J. A.
,
1996
, “
Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces
,”
Acta Numer.
,
5
, pp.
309
395
.
26.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
, Vol.
3
,
Cambridge University Press
,
Cambridge
.
27.
Wang
,
M. Y.
, and
Wang
,
S.
,
2006
, “
Parametric Shape and Topology Optimization With Radial Basis Functions
,”
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
,
Springer, Berlin
, pp.
13
22
.
28.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
, pp.
2060
2090
.
29.
Jiang
,
L.
,
Chen
,
S.
, and
Jiao
,
X.
, “
Parametric Shape and Topology Optimization: A New Level Set Approach Based on Cardinal Basis Functions
,”
Int. J. Numer. Methods Eng.
,
114
, pp.
66
87
.
30.
Zhou
,
C.
,
2014
, “
A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography
,”
J. Manuf. Sci. Eng.
,
136
,
061023
.
31.
Ye
,
H.
,
Zhou
,
C.
, and
Xu
,
W.
,
2017
, “
Image-Based Slicing and Tool Path Planning for Hybrid Stereolithography Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
139
,
071006
.
32.
Chen
,
Y.
,
Li
,
K.
, and
Qian
,
X.
,
2013
, “
Direct Geometry Processing for Telefabrication
,”
ASME J. Comput. Inform. Sci. Eng.
,
13
,
041002
.
33.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
, p.
1706539
.
34.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Opt.
,
16
, pp.
68
75
.
35.
Osher
,
S.
, and
Sethian
,
J.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
.
36.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
37.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Sets Methods and Dynamic Implicit Surfaces
,
Springer
,
New York, NY
.
38.
Li
,
C.
,
Xu
,
C.
,
Gui
,
C.
, and
Fox
,
M. D.
,
2010
, “
Distance Regularized Level Set Evolution and Its Application to Image Segmentation
,”
Image Process. IEEE Trans.
,
19
, pp.
3243
3254
.
39.
Fleury
,
C.
,
1989
, “
CONLIN: An Efficient Dual Optimizer Based on Convex Approximation Concepts
,”
Struct. Opt.
,
1
, pp.
81
89
.
40.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
, pp.
309
336
.
41.
Rozvany
,
G. I. N.
,
1992
,
Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods
, Vol.
325
,
Springer
,
New York, NY
.
42.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
359
373
.
43.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Opt.
,
12
, pp.
555
573
.
44.
Jiang
,
L.
, and
Chen
,
S.
,
2017
, “
Parametric Structural Shape & Topology Optimization With a Variational Distance-Regularized Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
316
336
.
45.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Prototyp. J.
,
19
, pp.
153
165
.
You do not currently have access to this content.