In recent years, cutting tool manufacturers are moving toward improving the robustness of the positioning of an insert in the tool body interface. Increasing the robustness of the interface involves designs with both chamfered and serrated surfaces. These designs have a tendency to overdetermine the positioning and cause instabilities in the interface. Cutting forces generated from the machining process will also plastically deform the interface, consequently, altering the positioning of the insert. Current methodologies within positioning and variation simulation use point-based contacts and assume linear material behavior. In this paper, a first-order reliability-based design optimization framework that allows robust positioning of surface-to-surface-based contacts is presented. Results show that the contact variation over the interface can be limited to predefined contact zones, consequently allowing successful positioning of inserts in early design phases of cutting tool designs.

References

References
1.
Özel
,
T.
,
Hsu
,
T. K.
, and
Zeren
,
E.
,
2005
, “
Effects of Cutting Edge Geometry, Workpiece Hardness, Feed Rate and Cutting Speed on Surface Roughness and Forces in Finish Turning of Hardened AISI H13 Steel
,”
Int. J. Adv. Manuf. Technol.
,
25
(
34
), pp.
262
269
.
2.
Dogra
,
M.
,
Sharma
,
V. S.
, and
Dureja
,
J.
,
2011
, “
Effect of Tool Geometry Variation on Finish Turning—A Review
,”
J. Eng. Sci. Technol. Rev.
,
4
(
1
), pp.
1
13
.
3.
Chen
,
L.
,
Yang
,
J. A.
, and
Shih
,
A. J.
,
2018
, “
Bore Cylindricity in Finish Cylinder Boring
,”
J. Manuf. Sci. Eng.
,
140
(
6
), p.
061015
.
4.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), pp.
121004
.
5.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
J. Comput. Inf. Sci. Eng.
,
5
(
3
), p.
247
.
6.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Design
,
10
(
2
), pp.
165
181
.
7.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
.
8.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Design
,
17
(
5
), pp.
411
428
.
9.
Shawki
,
G.
, and
Abdel-Aal
,
M.
,
1965
, “
Effect of Fixture Rigidity and Wear on Dimensional Accuracy
,”
Int. J. Mach. Tool Design Res.
,
5
(
3
), pp.
183
202
.
10.
Hurtado
,
J. F.
, and
Melkote
,
S. N.
,
2001
, “
Improved Algorithm for Tolerance-based Stiffness Optimization of Machining Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
720
.
11.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), pp.
101004
.
12.
Dantan
,
J. Y.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2008
, “
Geometrical Product Specifications – Model for Product Life Cycle
,”
Comput. Aided Des.
,
40
(
4
), pp.
493
501
.
13.
Schleich
,
B.
, and
Wartzack
,
S.
,
2016
, “
A Quantitative Comparison of Tolerance Analysis Approaches for Rigid Mechanical Assemblies
,”
Procedia CIRP
,
43
, pp.
172
177
.
14.
Garaizar
,
O. R.
,
Qiao
,
L.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2016
, “
Integration of Thermal Effects into Tolerancing Using Skin Model Shapes
,”
Procedia CIRP
,
43
, pp.
196
201
.
15.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
.
16.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
.
17.
Yu
,
H.
,
Zhao
,
C.
, and
Lai
,
X.
,
2018
, “
Compliant Assembly Variation Analysis of Scalloped Segment Plates With a New Irregular Quadrilateral Plate Element Via ANCF
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), pp.
091006
.
18.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody. Syst. Dyn.
,
1
(
2
), pp.
189
222
.
19.
Camuz
,
S.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lundblad
,
M.
,
2018
, “
Tolerance Analysis of Surface-to-surface Contacts Using Finite Element Analysis
,”
15th CIRP Conference on Computer Aided Tolerancing – CIRP CAT 2018
,
Milan, Italy
.
20.
Camuz
,
S.
,
Bengtsson
,
M.
,
Söderberg
,
R.
, and
Wärmefjord
,
K.
,
2017
, “
Contact Variation Optimization for Surface-to-surface Contacts
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Tampa, Florida, USA
,
November 3-9
.
21.
Holmberg
,
K.
, and
Matthews
,
A.
,
2009
,
Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering
,
Elsevier
,
New York
.
22.
Du
,
X.
,
2005
,
Probabilistic Engineering Design
,
Missouri University of Science and Technology
,
Rolla, MO
, Chapter 7.
23.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
24.
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
, and
Singhal
,
S.
,
2005
,
Engineering Design Reliability Handbook
,
CRC Press
,
Boca Raton, FL
.
25.
Wahde
,
M.
,
2008
,
Biologically Inspired Optimization Methods—An Introduction
,
WIT Press
,
Southampton
.
This content is only available via PDF.
You do not currently have access to this content.