Linear tool path segments of computer numerical control (CNC) machine tools need to be smoothed and interpolated in order to guarantee continuous and steady machining. However, because of the highly nonlinear relation between arc lengths and spline parameters, it is difficult to develop algorithms to simultaneously achieve real-time corner smoothing and interpolation with high-order continuity, although it is important to guarantee both high calculation efficiency and good dynamic performance of high-speed CNC machining. This paper develops a computationally efficient real-time corner smoothing and interpolation algorithm with C3 continuous feature. The corners at the junction of linear segments are smoothed by inserting Pythagorean-hodograph (PH) splines under the constraints of user-defined tolerance limits. Analytical solutions of the arc length and curvature of the smoothed tool path are obtained by evaluating a polynomial function of the spline parameter. The smoothed tool path is interpolated in real time with continuous and peak-constrained jerk. Simulations and experimental results show that the proposed tool path smoothing and interpolation algorithm can be executed in real time with 0.5 ms control period. Acceleration and jerk continuity of each axis are achieved along the tool path. Comparisons with existing corner smoothing algorithms show that the proposed method has lower jerk than existing C2 algorithms and the real-time interpolation algorithms based on the Taylor series expansion.

References

References
1.
Tsai
,
M.
, and
Cheng
,
C.
,
2003
, “
A Real-Time Predictor-Corrector Interpolator for CNC Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
449
460
.
2.
Chen
,
Z.
, and
Khan
,
M.
,
2012
, “
Piecewise B-spline Tool Paths with the arc-length Parameter and Their Application on High Feed, Accurate CNC Milling of Free-Form Profiles
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), pp.
031007
.
3.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2005
, “
Quintic Spline Interpolation with Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
339
349
.
4.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), pp.
044501
.
5.
Tajima
,
S.
, and
Sencer
,
B.
,
2017
, “
Global Tool-Path Smoothing for CNC Machine Tools with Uninterrupted Acceleration
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
81
95
.
6.
Yang
,
J.
,
Ai
,
W.
,
Liu
,
Y.
, and
Chen
,
B.
,
2018
, “
Kinematics Model and Trajectory Interpolation Algorithm for CNC Turning of Non-Circular Profiles
,”
Precis. Eng.
,
54
, pp.
212
221
.
7.
Pateloup
,
V.
,
Duc
,
E.
, and
Ray
,
P.
,
2010
, “
B Spline Approximation of Circle arc and Straight Line for Pocket Machining
,”
Comput.-Aided Des.
,
42
(
9
), pp.
817
827
.
8.
Zhao
,
H.
,
Zhu
,
L.
, and
Ding
,
H.
,
2013
, “
A Real-Time Look-Ahead Interpolation Methodology with Curvature-Continuous B-spline Transition Scheme for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
88
98
.
9.
Tulsyan
,
S.
, and
Altintas
,
Y.
,
2015
, “
Local Toolpath Smoothing for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
15
26
.
10.
Yang
,
J.
, and
Yuen
,
A.
,
2017
, “
An Analytical Local Corner Smoothing Algorithm for Five-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
22
35
.
11.
Hu
,
Q.
,
Chen
,
Y.
,
Yang
,
J.
, and
Zhang
,
D.
,
2018
, “
An Analytical C3 Continuous Local Corner Smoothing Algorithm for Four-Axis Computer Numerical Control Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), pp.
051004
.
12.
Cheng
,
C.
, and
Tsai
,
M.
,
2004
, “
Real-Time Variable Feed Rate Nurbs Curve Interpolator for CNC Machining
,”
Int. J. Adv. Manuf. Technol.
,
23
(
11–12
), pp.
865
873
.
13.
Lin
,
M.
,
Tsai
,
M.
, and
Yau
,
H.
,
2007
, “
Development of a Dynamics-Based Nurbs Interpolator with Real-Time Look-Ahead Algorithm
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2246
2262
.
14.
Duan
,
M.
, and
Okwudire
,
C.
,
2016
, “
Minimum-Time Cornering for CNC Machines Using an Optimal Control Method with Nurbs Parameterization
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1405
1418
.
15.
Langeron
,
J.
,
Duc
,
E.
,
Lartigue
,
C.
, and
Bourdet
,
P.
,
2004
, “
A New Format for 5-axis Tool Path Computation, Using B-spline Curves
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1219
1229
.
16.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2016
, “
Smooth Tool Path Optimization for Flank Milling Based on the Gradient-based Differential Evolution Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), pp.
081009
.
17.
Yuen
,
A.
,
Zhang
,
K.
, and
Altintas
,
Y.
,
2013
, “
Smooth Trajectory Generation for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
11
19
.
18.
Yang
,
J.
, and
Altintas
,
Y.
,
2013
, “
Generalized Kinematics of Five-Axis Serial Machines with Non-Singular Tool Path Generation
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
119
132
.
19.
Yang
,
J.
,
Chen
,
Y.
,
Chen
,
Y.
, and
Zhang
,
D.
,
2015
, “
A Tool Path Generation and Contour Error Estimation Method for Four-Axis Serial Machines
,”
Mechatronics
,
31
, pp.
78
88
.
20.
Okwudire
,
C.
,
Ramani
,
K.
, and
Duan
,
M.
,
2016
, “
A Trajectory Optimization Method for Improved Tracking of Motion Commands Using CNC Machines that Experience Unwanted Vibration
,”
CIRP Annals
,
65
(
1
), pp.
373
376
.
21.
Fleisig
,
R.
, and
Spence
,
A.
,
2001
, “
A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-Axis Machining
,”
Comput.-Aided Des.
,
33
(
1
), pp.
1
15
.
22.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2013
, “
5-Axis Local Corner Rounding of Linear Tool Path Discontinuities
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
9
16
.
23.
Fan
,
W.
,
Lee
,
C.
, and
Chen
,
J.
,
2015
, “
A Realtime Curvature-Smooth Interpolation Scheme and Motion Planning for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
27
46
.
24.
Bi
,
Q.
,
Shi
,
J.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
96
108
.
25.
Sencer
,
B.
, and
Shamoto
,
E.
,
2014
, “
Curvature-Continuous Sharp Corner Smoothing Scheme for Cartesian Motion Systems
,”
Advanced Motion Control (AMC), 2014 IEEE 13th International Workshop on
, pp.
374
379
. IEEE,
New York
.
26.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of NC Systems Along Linear Tool Paths
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1977
1992
.
27.
Heng
,
M.
, and
Erkorkmaz
,
K.
,
2010
, “
Design of a Nurbs Interpolator with Minimal Feed Fluctuation and Continuous Feed Modulation Capability
,”
Int. J. Mach. Tools Manuf.
,
50
(
3
), pp.
281
293
.
28.
Farouki
,
R. T.
,
2008
,
Pythagorean-Hodograph Curves
,
Springer
,
New York
.
29.
Shi
,
J.
,
Bi
,
Q.
,
Wang
,
Y.
, and
Liu
,
G.
,
2014
, “
Development of Real-Time Look-Ahead Methodology Based on Quintic PH Curve with rmG2 Continuity for High-Speed Machining
,”
Appl. Mech. Mater.
,
464
, pp.
258
264
.
30.
Shi
,
J.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Wang
,
Y.
,
2015
, “
Corner Rounding of Linear Five-Axis Tool Path by Dual PH Curves Blending
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
223
236
.
31.
Farouki
,
R. T.
,
2014
, “
Construction of G2 Rounded Corners with Pythagorean-Hodograph Curves
,”
Comput. Aided. Geom. Des.
,
31
(
2
), pp.
127
139
.
32.
Jahanpour
,
J.
, and
Imani
,
B.
,
2008
, “
Real-Time PH Curve CNC Interpolators for High Speed Cornering
,”
Int. J. Adv. Manuf. Technol.
,
39
(
3–4
), pp.
302
316
.
33.
Lee
,
A.
,
Lin
,
M.
,
Pan
,
Y.
, and
Lin
,
W.
,
2011
, “
The Feedrate Scheduling of Nurbs Interpolator for CNC Machine Tools
,”
Comput.-Aided Des.
,
43
(
6
), pp.
612
628
.
34.
Yeung
,
Chi-Ho
,
Altintas
,
Yusuf
, and
Erkorkmaz
,
Kaan
,
2006
, “
Virtual CNC system. Part I. System architecture
,”
International Journal of Machine Tools and Manufacture
,
46
(
10
), pp.
1107
1123
.
35.
Farouki
,
R. T.
, and
Tsai
,
Y.
,
2001
, “
Exact Taylor Series Coefficients for Variable-Feedrate CNC Curve Interpolators
,”
Comput.-Aided Des.
,
33
(
2
), pp.
155
165
.
36.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
You do not currently have access to this content.