This paper presents a comprehensive review on the sources of model inaccuracy and parameter uncertainty in metal laser powder bed fusion (L-PBF) process. Metal additive manufacturing (AM) involves multiple physical phenomena and parameters that potentially affect the quality of the final part. To capture the dynamics and complexity of heat and phase transformations that exist in the metal L-PBF process, computational models and simulations ranging from low to high fidelity have been developed. Since it is difficult to incorporate all the physical phenomena encountered in the L-PBF process, computational models rely on assumptions that may neglect or simplify some physics of the process. Modeling assumptions and uncertainty play significant role in the predictive accuracy of such L-PBF models. In this study, sources of modeling inaccuracy at different stages of the process from powder bed formation to melting and solidification are reviewed. The sources of parameter uncertainty related to material properties and process parameters are also reviewed. The aim of this review is to support the development of an approach to quantify these sources of uncertainty in L-PBF models in the future. The quantification of uncertainty sources is necessary for understanding the tradeoffs in model fidelity and guiding the selection of a model suitable for its intended purpose.

References

1.
Bourell
,
D. L.
,
Beaman
,
J. J.
,
Marcus
,
H. L.
, and
Barlow
,
J. W.
,
1990
, “
Solid Freeform Fabrication: An Advanced Manufacturing Approach
,”
International Solid Freeform Fabrication Symposium
, University of Texas at Austin,
Austin, TX
, pp.
1
7
.
2.
Partee
,
B.
,
Hollister
,
S. J.
, and
Das
,
S.
,
2006
, “
Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA 6501 Polycaprolactone Bone Tissue Engineering Scaffolds
,”
J. Manuf. Sci. Eng.
,
128
(
2
), pp.
531
540
.
3.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
,
2008
, “
Cellular Ti-6Al-4 V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
4.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
5.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jordá Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramón Blasco Puchades
,
J.
, and
Portolés Griñan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.
6.
Kianian
,
B.
,
2016
, “
Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry
,”
Annual Worldwide Progress Report
,
Wohlers Associates, Inc.
,
Fort Collins, CO
, pp.
355
.
7.
Coykendall
,
J.
,
Cotteleer
,
M.
,
Holdowsky
,
L.
, and
Mahto
,
M.
,
2014
,
3D Opportunity in Aerospace and Defense
,
Deloitte University Press
, pp.
1
28
.
8.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
,
2010
,
Rapid Prototyping : Principles and Applications
,
World Scientific Publishing Co. PTE. Ltd
,
Singapore
.
9.
Holshouser
,
C.
,
Newell
,
C.
,
Palas
,
S.
,
Martin
,
L.
,
Duty
,
C.
,
Love
,
L.
,
Kunc
,
V.
,
Lind
,
R.
,
Lloyd
,
P.
,
Rowe
,
J.
,
Dehoff
,
R.
,
Peter
,
W.
, and
Blue
,
C.
,
2013
, “
Out of Bounds Additive Manufacturing
,”
Adv. Mater. Process.
,
171
(
3
), pp.
15
17
.
10.
Herderick
,
E.
,
2011
, “
Additive Manufacturing of Metals: A Review
,”
Materials Science and Technology Conference and Exhibition 2011, MS and T'11
, Vol.
2
, pp.
1413
1425
.
11.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines
,”
Materials (Basel)
,
10
(
6
),
672
.
12.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,”
Rapid Prototyp. J.
,
5
(
4
), pp.
169
178
.
13.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2497
2504
.
14.
Kobryn
,
P. A.
,
Ontko
,
N. R.
,
Perkins
,
L. P.
, and
Tiley
,
J. S.
,
2006
, “
Additive Manufacturing of Aerospace Alloys for Aircraft Structures
,”
Meeting Proceedings RTO-MP-AVT-139, Paper 3
,
Neuilly-sur-Seine, France
,
139
(
2006
), pp.
1
14
.
15.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2014
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
1
), pp.
96
117
.
16.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
),
041304
.
17.
Zhang
,
Y.
,
Lee
,
W. H.
,
Wu
,
L.
,
Meng
,
L.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2018
,
Multiscale Multiphysics Modeling of Laser Powder Bed Fusion Process
,
Additive Manufacturing
,
Butterworth, Heinemann
.
18.
Zhang
,
J.
,
Zhang
,
Y.
,
Lee
,
W. H.
,
Wu
,
L.
,
Choi
,
H. H.
, and
Jung
,
Y. G.
,
2018
, “
A Multi-Scale Multi-Physics Modeling Framework of Laser Powder Bed Fusion Additive Manufacturing Process
,”
Met. Powder Rep.
,
73
(
3
), pp.
151
157
.
19.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
20.
Klassen
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Evaporation Model for Beam Based Additive Manufacturing Using Free Surface Lattice Boltzmann Methods
,”
J. Phys. D. Appl. Phys.
,
47
(
27
),
275303
.
21.
Assouroko
,
I.
,
Lopez
,
F.
, and
Witherell
,
P.
,
2016
, “
A Method for Characterizing Model Fidelity in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
, pp.
1
13
.
22.
Roh
,
B.
,
Kumara
,
S. R. T.
,
Simpson
,
T. W.
, and
Witherell
,
P.
,
2016
, “
Ontology-Based Laser and Thermal Metamodels for Metal-Based Additive Manufacturing
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, North Carolina
,
Aug. 21–24
, pp.
1
8
.
23.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z.-K.
,
Chen
,
L.-Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
J. Manuf. Sci. Eng.
,
136
(
6
),
061025
.
24.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
, pp.
2855
2874
.
25.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME 2016 International Manufacturing Science and Engineering (MSEC2016)
,
Blacksburg, VA
,
June 27–July 1
, Vol.
138
, pp.
1
10
.
26.
Tesfaye
,
M.
,
Yan
,
W.
,
Lin
,
S.
,
Ameta
,
G.
,
Fox
,
J.
, and
Witherell
,
P.
(
2018
). “
Quantifying Uncertainty In Laser Powder Bed Fusion Additive Manufacturing Models and Simulations
,”
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
.
27.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arroyave
,
R.
,
2018
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6 Al-4 V
,”
IISE Trans.
,
5854
, pp.
1
44
.
28.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
7
,
116
.
29.
ASME-V&V-20-2009
,
2009
,
An Overview of ASME V&V 20: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
,
New York
.
30.
Mindt
,
H. W.
,
Megahed
,
M.
,
Lavery
,
N. P.
,
Holmes
,
M. A.
, and
Brown
,
S. G. R.
,
2016
, “
Powder Bed Layer Characteristics: The Overseen First-Order Process Input
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
47
(
8
), pp.
3811
3822
.
31.
Parteli
,
E. J. R.
, and
Pöschel
,
T.
,
2016
, “
Particle-Based Simulation of Powder Application in Additive Manufacturing
,”
Powder Technol.
,
288
, pp.
96
102
.
32.
Dou
,
X.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Effects of Contact Force Model and Size Distribution on Microsized Granular Packing
,”
J. Manuf. Sci. Eng.
,
136
(
2
),
021003
.
33.
Xiang
,
Z.
,
Yin
,
M.
,
Deng
,
Z.
,
Mei
,
X.
, and
Yin
,
G.
,
2016
, “
Simulation of Forming Process of Powder Bed for Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
138
(
8
),
081002
.
34.
Parteli
,
E. J. R.
,
2013
, “
DEM Simulation of Particles of Complex Shapes Using the Multisphere Method: Application for Additive Manufacturing
,”
AIP Conf. Proc.
,
1542
(
2013
), pp.
185
188
.
35.
Herbold
,
E. B.
,
Walton
,
O.
, and
Homel
,
M. A.
(
2015
). “
Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method
,”
Report No. LLNL-TR-678550
.
36.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Dynamic Simulation of Particle Packing With Different Size Distributions
,”
J. Manuf. Sci. Eng.
,
133
(
2
),
021011
.
37.
Körner
,
C.
,
Bauereiß
,
A.
, and
Attar
,
E.
,
2013
, “
Fundamental Consolidation Mechanisms During Selective Beam Melting of Powders
,”
Model. Simul. Mater. Sci. Eng.
,
21
(
8
),
085011
.
38.
Meakin
,
P.
, and
Jullien
,
R.
,
1987
, “
Restructuring Effects in the Rain Model for Random Deposition
,”
J. Phys.
,
48
(
10
), pp.
1651
1662
.
39.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
131
(
3
),
031004
.
40.
Shi
,
Y.
, and
Zhang
,
Y.
,
2008
, “
Simulation of Random Packing of Spherical Particles With Different Size Distributions
,”
Appl. Phys. A
,
92
(
3
), pp.
621
626
.
41.
Boley
,
C. D.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Calculation of Laser Absorption by Metal Powders in Additive Manufacturing
,”
Appl. Opt.
,
54
(
9
), pp.
2477
82
.
42.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Laser Irradiation to a Randomly Packed Bimodal Powder Bed
,”
Int. J. Heat Mass Transf.
,
52
(
13–14
), pp.
3137
3146
.
43.
Tang
,
H. P.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X. Z.
,
Yang
,
G. Y.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4 V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
.
44.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
),
041101
.
45.
Devesse
,
W.
,
De Baere
,
D.
, and
Guillaume
,
P.
,
2014
, “
The Isotherm Migration Method in Spherical Coordinates With a Moving Heat Source
,”
Int. J. Heat Mass Transf.
,
75
, pp.
726
735
.
46.
Rosenthal
,
D.
,
1946
,
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
, ASME,
Cambridge
, pp.
849
866
.
47.
Malmelöv
,
A.
,
2016
,
Modeling of Additive Manufacturing With Reduced Computational Effort; Simulation of Laser Metal Deposition with Inconel 625
,
Luleå University of Technology
,
Luleå, Sweden
.
48.
Lindgren
,
L. E.
,
Lundbäck
,
A.
,
Fisk
,
M.
,
Pederson
,
R.
, and
Andersson
,
J.
,
2016
, “
Simulation of Additive Manufacturing Using Coupled Constitutive and Microstructure Models
,”
Addit. Manuf.
,
12
, pp.
144
158
.
49.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.
50.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des.
,
52
, pp.
638
647
.
51.
Gusarov
,
A. V.
, and
Kruth
,
J. P.
,
2005
, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transf.
,
48
(
16
), pp.
3423
3434
.
52.
Meier
,
C.
,
Penny
,
R. W.
,
Zou
,
Y.
,
Gibbs
,
J. S.
, and
Hart
,
A. J.
,
2017
, “
Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation
,”
Annu. Rev. Heat Transf.
,
abs/1709.09510
.
53.
Li
,
J. F.
,
Li
,
L.
, and
Stott
,
F. H.
,
2004
, “
Comparison of Volumetric and Surface Heating Sources in the Modeling of Laser Melting of Ceramic Materials
,”
Int. J. Heat Mass Transf.
,
47
(
6–7
), pp.
1159
1174
.
54.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Boillat
,
E.
, and
Glardon
,
R.
,
2003
, “
Sintering of Commercially Pure Titanium Powder With a Nd:YAG Laser Source
,”
Acta Mater.
,
51
(
6
), pp.
1651
1662
.
55.
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2017
, “
Three-Dimensional Finite Element Thermomechanical Modeling of Additive Manufacturing by Selective Laser Melting for Ceramic Materials
,”
Addit. Manuf.
,
16
, pp.
124
137
.
56.
Körner
,
C.
,
Attar
,
E.
, and
Heinl
,
P.
,
2011
, “
Mesoscopic Simulation of Selective Beam Melting Processes
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
978
987
.
57.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4 V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.
58.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: A New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
.
59.
Wang
,
X.
, and
Kruth
,
J.
,
2000
, “
Energy Absorption and Penetration in Selective Laser Sintering: A Ray Tracing Model
,”
Proceedings of the International Conference on Mathematical Modelling and Simulation of Metal Technologies
, pp.
673
683
.
60.
Markl
,
M.
, and
Korner
,
C.
,
2016
, “
Multiscale Modeling of Powder Bed–Based Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
, pp.
1
34
.
61.
Mukherjee
,
T.
,
Wei
,
H. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing—Part I: Modeling of Powder Bed Fusion
,”
Comput. Mater. Sci.
,
150
, pp.
304
313
.
62.
Criales
,
L. E.
,
Arısoy
,
Y. M.
,
Lane
,
B.
,
Moylan
,
S.
,
Donmez
,
A.
, and
Özel
,
T.
,
2017
, “
Predictive Modeling and Optimization of Multi-Track Processing for Laser Powder Bed Fusion of Nickel Alloy 625
,”
Addit. Manuf.
,
13
, pp.
14
36
.
63.
Dai
,
D.
, and
Gu
,
D.
,
2015
, “
Tailoring Surface Quality Through Mass and Momentum Transfer Modeling Using a Volume of Fluid Method in Selective Laser Melting of TiC/AlSi10Mg Powder
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
95
107
.
64.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
65.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
.
66.
Das
,
S.
,
2003
, “
Physical Aspects of Process Control in Selective Laser Sintering of Metals
,”
Adv. Eng. Mater.
,
5
(
10
), pp.
701
711
.
67.
Gusarov
,
A. V.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Heat Transfer Modelling and Stability Analysis of Selective Laser Melting
,”
Appl. Surf. Sci.
,
254
, pp.
975
979
.
68.
Juechter
,
V.
,
Scharowsky
,
T.
,
Singer
,
R. F.
, and
Körner
,
C.
,
2014
, “
Processing Window and Evaporation Phenomena for Ti-6Al-4 V Produced by Selective Electron Beam Melting
,”
Acta Mater.
,
76
, pp.
252
258
.
69.
Sun
,
X.
,
Zhou
,
W.
,
Kikuchi
,
K.
,
Nomura
,
N.
,
Kawasaki
,
A.
,
Doi
,
H.
,
Tsutsumi
,
Y.
, and
Hanawa
,
T.
,
2017
, “
Fabrication and Characterization of a Low Magnetic Zr-1Mo Alloy by Powder Bed Fusion Using a Fiber Laser
,”
Metals (Basel)
,
7
(
11
), p.
501
.
70.
Liu
,
Y. J.
,
Li
,
S. J.
,
Wang
,
H. L.
,
Hou
,
W. T.
,
Hao
,
Y. L.
,
Yang
,
R.
,
Sercombe
,
T. B.
, and
Zhang
,
L. C.
,
2016
, “
Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting
,”
Acta Mater.
,
113
, pp.
56
67
.
71.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting with Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
.
72.
Lee
,
Y.
,
2015
,
Simulation of Laser Additive Manufacturing and Its Applications
,
The Ohio State University
,
Columbus, OH
.
73.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B. E.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Proceedings of Solid Freeform Fabrication Symposium
, University of Texas at Austin,
Austin
, pp.
796
814
.
74.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.
75.
Antony
,
K.
,
Arivazhagan
,
N.
, and
Senthilkumaran
,
K.
,
2014
, “
Numerical and Experimental Investigations on Laser Melting of Stainless Steel 316L Metal Powders
,”
J. Manuf. Process.
,
16
(
3
), pp.
345
355
.
76.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Solberg
,
J. M.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.
77.
Zhang
,
Y.
,
Guillemot
,
G.
,
Bernacki
,
M.
, and
Bellet
,
M.
,
2018
, “
Macroscopic Thermal Finite Element Modeling of Additive Metal Manufacturing by Selective Laser Melting Process
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
514
535
.
78.
Zhou
,
W.
,
Loney
,
D.
,
Fedorov
,
A. G.
,
Degertekin
,
F. L.
, and
Rosen
,
D. W.
,
2013
, “
Lattice Boltzmann Simulations of Multiple Droplet Interactions During Impingement on the Substrate
,”
International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
606
621
.
79.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2015
, “
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing
,”
International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
1154
1165
.
80.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.
81.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
82.
Gürtler
,
F. J.
,
Karg
,
M.
,
Leitz
,
K. H.
, and
Schmidt
,
M.
,
2013
, “
Simulation of Laser Beam Melting of Steel Powders Using the Three-Dimensional Volume of Fluid Method
,”
Phys. Procedia
,
41
, pp.
881
886
.
83.
Megahed
,
M.
,
Mindt
,
H.-W.
,
N’Dri
,
N.
,
Duan
,
H.
, and
Desmaison
,
O.
,
2016
, “
Metal Additive-Manufacturing Process and Residual Stress Modeling
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
4
.
84.
Tang
,
C.
,
Tan
,
J. L.
, and
Wong
,
C. H.
,
2018
, “
A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting
,”
Int. J. Heat Mass Transf.
,
126
, pp.
957
968
.
85.
Masoomi
,
M.
,
Pegues
,
J. W.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2018
, “
A Numerical and Experimental Investigation of Convective Heat Transfer During Laser-Powder Bed Fusion
,”
Addit. Manuf.
,
22
, pp.
729
745
.
86.
King
,
W.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
, and
Khairallah
,
S. A.
,
2015
, “
Overview of Modelling and Simulation of Metal Powder Bed Fusion Process at Lawrence Livermore National Laboratory
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
957
968
.
87.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
J. Mech. Des.
,
138
, pp.
1
4
.
88.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
2015 Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 10–12
, pp.
219
228
.
89.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
.
90.
Song
,
B.
,
Dong
,
S.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Process Parameter Selection for Selective Laser Melting of Ti6Al4 V Based on Temperature Distribution Simulation and Experimental Sintering
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
967
974
.
91.
Cheng
,
B.
, and
Chou
,
K.
,
2015
, “
Melt Pool Evolution Study in Selective Laser Melting
,”
26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 10–12
,
53
, pp.
1182
1194
.
92.
Foteinopoulos
,
P.
,
Papacharalampopoulos
,
A.
, and
Stavropoulos
,
P.
,
2018
, “
On Thermal Modeling of Additive Manufacturing Processes
,”
CIRP J. Manuf. Sci. Technol
,
20
, pp.
66
83
.
93.
Rausch
,
A. M.
,
Küng
,
V. E.
,
Pobel
,
C.
,
Markl
,
M.
, and
Körner
,
C.
,
2017
, “
Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
,”
Materials (Basel)
,
10
(
10
),
1117
.
94.
Wu
,
Y. C.
,
San
,
C. H.
,
Chang
,
C. H.
,
Lin
,
H. J.
,
Marwan
,
R.
,
Baba
,
S.
, and
Hwang
,
W. S.
,
2018
, “
Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting With Random Powder Distribution and Experimental Validation
,”
J. Mater. Process. Technol.
,
254
, pp.
72
78
.
95.
Pei
,
W.
,
Zhengying
,
W.
,
Zhen
,
C.
,
Junfeng
,
L.
,
Shuzhe
,
Z.
, and
Jun
,
D.
,
2017
, “
Numerical Simulation and Parametric Analysis of Selective Laser Melting Process of AlSi10Mg Powder
,”
Appl. Phys. A
,
123
(
8
), pp.
540
.
96.
Panwisawas
,
C.
,
Qiu
,
C.
,
Anderson
,
M. J.
,
Sovani
,
Y.
,
Turner
,
R. P.
,
Attallah
,
M. M.
,
Brooks
,
J. W.
, and
Basoalto
,
H. C.
,
2017
, “
Mesoscale Modelling of Selective Laser Melting: Thermal Fluid Dynamics and Microstructural Evolution
,”
Comput. Mater. Sci.
,
126
, pp.
479
490
.
97.
Heeling
,
T.
,
Cloots
,
M.
, and
Wegener
,
K.
,
2017
, “
Melt Pool Simulation for the Evaluation of Process Parameters in Selective Laser Melting
,”
Addit. Manuf.
,
14
, pp.
116
125
.
98.
Glicksman
,
M. E.
,
2011
,
Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts
,
Springer Science + Business Media
,
Berlin/Heidelberg, Germany
.
99.
Gockel
,
J.
,
Beutha
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4 V
,”
Addit. Manuf.
,
4
, pp.
119
126
.
100.
Hanzl
,
P.
,
Zetek
,
M.
,
Bakša
,
T.
, and
Kroupa
,
T.
,
2015
, “
The Influence of Processing Parameters on the Mechanical Properties of SLM Parts
,”
Procedia Eng.
,
100
, pp.
1405
1413
.
101.
Zinoviev
,
A.
,
Zinovieva
,
O.
,
Ploshikhin
,
V.
,
Romanova
,
V.
, and
Balokhonov
,
R.
,
2016
, “
Evolution of Grain Structure During Laser Additive Manufacturing. Simulation by a Cellular Automata Method
,”
Mater. Des.
,
106
, pp.
321
329
.
102.
Wu
,
A. S.
,
Brown
,
D. W.
,
Kumar
,
M.
,
Gallegos
,
G. F.
, and
King
,
W. E.
,
2014
, “
An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
45
(
13
), pp.
6260
6270
.
103.
Arısoy
,
Y. M.
,
Criales
,
L. E.
,
Özel
,
T.
,
Lane
,
B.
,
Moylan
,
S.
, and
Donmez
,
A.
,
2017
, “
Influence of Scan Strategy and Process Parameters on Microstructure and Its Optimization in Additively Manufactured Nickel Alloy 625 via Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1393
1417
.
104.
Boettinger
,
W. J.
,
Coriell
,
S. R.
,
Greer
,
A. L.
,
Karma
,
A.
,
Kurz
,
W.
,
Rappaz
,
M.
, and
Trivedi
,
R.
,
2000
, “
Solidification Microstructures: Recent Developments, Future Directions
,”
Acta Mater.
,
48
(
1
), pp.
43
70
.
105.
Chen
,
L.-Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.
106.
Keller
,
T.
,
Lindwall
,
G.
,
Ghosh
,
S.
,
Ma
,
L.
,
Lane
,
B. M.
,
Zhang
,
F.
,
Kattner
,
U. R.
,
Lass
,
E. A.
,
Heigel
,
J. C.
,
Idell
,
Y.
,
Williams
,
M. E.
,
Allen
,
A. J.
,
Guyer
,
J. E.
, and
Levine
,
L. E.
,
2017
, “
Application of Finite Element, Phase-Field, and CALPHAD-Based Methods to Additive Manufacturing of Ni-Based Superalloys
,”
Acta Mater.
,
139
, pp.
244
253
.
107.
Gong
,
X.
, and
Chou
,
K.
,
2015
, “
Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing
,”
JOM
,
67
(
5
), pp.
1176
1182
.
108.
Zaeem
,
M. A.
,
Yin
,
H.
, and
Felicelli
,
S. D.
,
2012
, “
Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals
,”
J. Mater. Sci. Technol.
,
28
(
2
), pp.
137
146
.
109.
Li
,
X.
, and
Tan
,
W.
,
2017
, “
3-Dimensional Cellular Automata Simulation of Grain Structure in Metal Additive Manufacturing Processes
,”
International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
1030
1047
.
110.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Multi-Level Uncertainty Quantification in Additive Manufacturing
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
, pp.
922
937
.
111.
Rai
,
A.
,
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
A Coupled Cellular Automaton – Lattice Boltzmann Model for Grain Structure Simulation During Additive Manufacturing
,”
Comput. Mater. Sci.
,
124
, pp.
37
48
.
112.
Lopez-Botello
,
O.
,
Martinez-Hernandez
,
U.
,
Ramírez
,
J.
,
Pinna
,
C.
, and
Mumtaz
,
K.
,
2017
, “
Two-Dimensional Simulation of Grain Structure Growth Within Selective Laser Melted AA-2024
,”
Mater. Des.
,
113
, pp.
369
376
.
113.
Parry
,
L.
,
Ashcroft
,
I.
,
Bracket
,
D.
, and
Wildman
,
R. D.
,
2015
, “
Investigation of Residual Stresses in Selective Laser Melting
,”
Key Eng. Mater.
,
627
, pp.
129
132
.
114.
Jiang
,
W.
,
Dalgarno
,
K. W.
, and
Childs
,
T. H. C.
,
2002
, “
Finite Element Analysis of Residual Stresses and Deformations in Direct Metal SLS Process
,”
Proceedings of Solid Freeform Fabrication Symposium
., pp.
340
348
.
115.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Vignes
,
R. M.
,
2016
, “
Experimental Comparison of Residual Stresses for a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Addit. Manuf.
,
12
, pp.
159
168
.
116.
Mercelis
,
P.
, and
Kruth
,
J.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
.
117.
Parry
,
L.
,
Ashcroft
,
I. A.
, and
Wildman
,
R. D.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation
,”
Addit. Manuf.
,
12
, pp.
1
15
.
118.
Lu
,
Y.
,
Wu
,
S.
,
Gan
,
Y.
,
Huang
,
T.
,
Yang
,
C.
,
Junjie
,
L.
, and
Lin
,
J.
,
2015
, “
Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy
,”
Opt. Laser Technol.
,
75
, pp.
197
206
.
119.
Ali
,
H.
,
Ma
,
L.
,
Ghadbeigi
,
H.
, and
Mumtaz
,
K.
,
2017
, “
In-Situ Residual Stress Reduction, Martensitic Decomposition and Mechanical Properties Enhancement Through High Temperature Powder Bed Pre-Heating of Selective Laser Melted Ti6Al4 V
,”
Mater. Sci. Eng. A
,
695
, pp.
211
220
.
120.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann. Manuf. Technol.
,
53
, pp.
195
198
.
121.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
122.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2015
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4 V
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
229
(
10
), pp.
1803
1813
.
123.
Li
,
Y.
,
Zhou
,
K.
,
Tan
,
P.
,
Tor
,
S. B.
,
Chua
,
C. K.
, and
Leong
,
K. F.
,
2018
, “
Modeling Temperature and Residual Stress Fields in Selective Laser Melting
,”
Int. J. Mech. Sci.
,
136
, pp.
24
35
.
124.
Yang
,
Y. P.
,
Jamshidinia
,
M.
,
Boulware
,
P.
, and
Kelly
,
S. M.
,
2018
, “
Prediction of Microstructure, Residual Stress, and Deformation in Laser Powder Bed Fusion Process
,”
Comput. Mech.
,
61
(
5
), pp.
599
615
.
125.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z. K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L. Q.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1
, pp.
52
63
.
126.
Yadroitsev
,
I.
,
2009
,
Selective Laser Melting : Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders
,
LAP LAMBERT Academic Publishing, AG & Co KG
:
Saarbrücken, Germany
.
127.
Mahesh
,
M.
,
Lane
,
B.
,
Donmez
,
A.
,
Feng
,
S.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,”
Natl. Inst. Stand. Technol.
pp.
1
50
.
128.
Ma
,
M.
,
Wang
,
Z.
,
Gao
,
M.
, and
Zeng
,
X.
,
2015
, “
Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel
,”
J. Mater. Process. Technol.
,
215
(
1
), pp.
142
150
.
129.
Zhang
,
B.
,
Dembinski
,
L.
, and
Coddet
,
C.
,
2013
, “
The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder
,”
Mater. Sci. Eng. A
,
584
, pp.
21
31
.
130.
Sufiiarov
,
V. S.
,
Popovich
,
A. A.
,
Borisov
,
E. V.
,
Polozov
,
I. A.
,
Masaylo
,
D. V.
, and
Orlov
,
A. V.
,
2017
, “
The Effect of Layer Thickness at Selective Laser Melting
,”
Procedia Eng.
,
174
, pp.
126
134
.
131.
Savalani
,
M. M.
, and
Pizarro
,
J. M.
,
2016
, “
Effect of Preheat and Layer Thickness on Selective Laser Melting (SLM) of Magnesium
,”
Rapid Prototyp. J.
,
22
(
1
), pp.
115
122
.
132.
Dingal
,
S.
,
Pradhan
,
T. R.
,
Sundar
,
J. K. S.
,
Choudhury
,
A. R.
, and
Roy
,
S. K.
,
2008
, “
The Application of Taguchi’s Method in the Experimental Investigation of the Laser Sintering Process
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
904
914
.
133.
McGlauflin
,
M.
, and
Moylan
,
S.
,
2016
, “
Powder Bed Layer Geometry
,”
ASPE/euspen Summer Topical Meeting. Advancing Precision in Additive Manufacturing
,
Raleigh, NC
,
June 27–30
, pp.
108
113
.
134.
Riedlbauer
,
D.
,
Scharowsky
,
T.
,
Singer
,
R. F.
,
Steinmann
,
P.
,
Körner
,
C.
, and
Mergheim
,
J.
,
2017
, “
Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4 V
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1309
1317
.
135.
Bergman
,
S.
,
2016
, “
Novel Beam Diagnostics Improve Laser Additive Manufacturing
,”
A Coherent Whitepaper
.
136.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
137.
Weingarten
,
K. J.
,
Braun
,
B.
, and
Keller
,
U.
,
1995
, “
In Situ Small-Signal Gain of Solid-State Lasers Determined From Relaxation Oscillation Frequency Measurements
,”
Opt. Lett.
,
19
(
15
), pp.
1140
1142
.
138.
Schlatter
,
A.
,
Zeller
,
S. C.
,
Grange
,
R.
,
Paschotta
,
R.
, and
Keller
,
U.
,
2004
, “
Pulse-Energy Dynamics of Passively Mode-Locked Solid-State Lasers Above the Q-Switching Threshold
,”
J. Opt. Soc. Am. B
,
21
(
8
), pp.
1469
1478
.
139.
Kusuma
,
C.
,
2016
,
The Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Pure Titanium and Ti-6Al-4V Alloy for Selective Laser Melting
,
Wright State University
,
Dayton, OH
.
140.
Yeung
,
H.
,
Neira
,
J.
,
Lane
,
B.
,
Fox
,
J.
, and
Lopez
,
F.
,
2016
, “
Laser Path Planning and Power Control Strategies for Powder
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
113
127
.
141.
ASPE 2014 Spring Topical Meeting
,
2014
,
Proceedings of Dimensional Accuracy and Surface Finish in Additive Manufacturing
, University of California,
CA
.
142.
Criales
,
L. E.
,
Arısoy
,
Y. M.
, and
Özel
,
T.
,
2016
, “
Sensitivity Analysis of Material and Process Parameters in Finite Element Modeling of Selective Laser Melting of Inconel 625
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
2653
2666
.
143.
Rubenchik
,
A.
,
Wu
,
S.
,
Mitchell
,
S.
,
Golosker
,
I.
,
LeBlanc
,
M.
, and
Peterson
,
N.
,
2015
, “
Direct Measurements of Temperature-Dependent Laser Absorptivity of Metal Powders
,”
Appl. Opt.
,
54
(
24
), pp.
7230
.
144.
Cho
,
J. H.
, and
Na
,
S. J.
,
2006
, “
Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole
,”
J. Phys. D. Appl. Phys.
,
39
(
24
), pp.
5372
5378
.
145.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing
,”
Appl. Mater. Today
,
9
, pp.
341
349
.
146.
Tolochko
,
N. K.
,
Laoui
,
T.
,
Khlopkov
,
Y. V.
,
Mozzharov
,
S. E.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
,
2000
, “
Absorptance of Powder Materials Suitable for Laser Sintering
,”
Rapid Prototyp. J.
,
6
(
3
), pp.
155
160
.
147.
Kruth
,
J. P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Assembly Automation Lasers and Materials in Selective Laser Sintering ‘Absorptance of Powder Materials Suitable for Laser Sintering’ Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.
,
2315
(
5
), pp.
357
371
.
148.
Sainte-Catherine
,
C.
,
Jeandin
,
M.
,
Kechemair
,
D.
,
Ricaud
,
J.-P.
, and
Sabatier
,
L.
,
1991
, “
Study of Dynamic Absorptivity at 10.6 Μm (Co2) and 1.06 Μm (Nd-Yag) Wavelengths as a Function of Temperature
,”
J. Phys. IV
,
1
, pp.
1
8
.
149.
Gouge
,
M.
, and
Michaleris
,
P.
,
2017
,
Thermo-Mechanical Modeling of Additive Manufacturing
,
Elsevier Science & Technology Books
,
New York
.
150.
Li
,
D.
,
Liu
,
Y.
,
Chen
,
Y.
,
Ren
,
J.
,
Liu
,
J.
, and
Yin
,
J.
,
2011
,
Simulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture
,
International Federation for Information Processing
, pp.
494
503
.
151.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
,
2005
, “
Photopyroelectric Measurement of Thermal Conductivity of Metallic Powders
,”
J. Appl. Phys.
,
97
(
2
), pp.
1
9
.
152.
Alkahari
,
M. R.
,
Furumoto
,
T.
,
Ueda
,
T.
,
Hosokawa
,
A.
,
Tanaka
,
R.
, and
Abdul Aziz
,
M. S.
,
2012
, “
Thermal Conductivity of Metal Powder and Consolidated Material Fabricated via Selective Laser Melting
,”
Key Eng. Mater.
,
523–524
, pp.
244
249
.
153.
Shapiro
,
M.
,
Dudko
,
V.
,
Royzen
,
V.
,
Krichevets
,
Y.
,
Lekhtmakher
,
S.
,
Grozubinsky
,
V.
,
Shapira
,
M.
, and
Brill
,
M.
,
2004
, “
Characterization of Powder Beds by Thermal Conductivity: Effect of Gas Pressure on the Thermal Resistance of Particle Contact Points
,”
Part. Part. Syst. Charact.
,
21
(
4
), pp.
268
275
.
154.
Childs
,
T. H. C.
,
Hauser
,
C.
, and
Badrossamay
,
M.
,
2005
, “
Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modelling
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
219
(
4
), pp.
339
357
.
155.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
156.
Zhang
,
D. Q.
,
Cai
,
Q. Z.
,
Liu
,
J. H.
,
Zhang
,
L.
, and
Li
,
R. D.
,
2010
, “
Select Laser Melting of W-Ni-Fe Powders: Simulation and Experimental Study
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
649
658
.
157.
Wen
,
C.
, and
Mudawar
,
I.
,
2002
, “
Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using
,”
J. Mater. Eng. Perform
,
11
, pp.
551
562
.
158.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
1995
, “
Emissivity of Powder Beds
,”
Sixth International Solid Freeform Fabrication Symposium
, pp.
402
408
.
159.
Kieruj
,
P.
,
Przestacki
,
D.
, and
Chwalczuk
,
T.
,
2016
, “
Determination of Emissivity Coefficient of Heat-Resistant Super Alloys and Cemented Carbide
,”
Arch. Mech. Technol. Mater.
,
36
(
1
), pp.
30
34
.
160.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM with Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
161.
del Campo
,
L.
,
Pérez-Sáez
,
R. B.
,
González-Fernández
,
L.
,
Esquisabel
,
X.
,
Fernández
,
I.
,
González-Martín
,
P.
, and
Tello
,
M. J.
,
2010
, “
Emissivity Measurements on Aeronautical Alloys
,”
J. Alloys Compd.
,
489
(
2
), pp.
482
487
.
162.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
4
), pp.
427
440
.
163.
Rodriguez
,
E.
,
Medina
,
F.
,
Espalin
,
D.
,
Terrazas
,
C.
,
Muse
,
D.
,
Henry
,
C.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting
,”
23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
945
961
.
164.
Roache
,
P.
, “
Code Verification by the Method of Manufactured Solutions
,”
J. Fluids Eng.
,
124
(
1
), pp.
4
10
.
165.
J. C. F. G. I. M.
,
2008
, “
JCGM: Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,”
Int. Organ. Stand. Geneva
ISBN,
50
, pp.
134
.
166.
AMBench
,
2018
, https://www.nist.gov/ambench, Accessed Oct. 18, 2018].
167.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1659
1677
.
168.
Reed
,
H. M.
,
Tomasetti
,
T.
,
Pires
,
M.
,
Vinci
,
R. P.
,
Castro
,
M.
,
Robeck
,
C.
,
Tomasetti
,
T.
,
Dc
,
W.
,
Verdonik
,
T.
, and
Haden
,
C. V.
,
2017
, “
Statistically-Substantiated Density Characterizations of Additively Manufactured Steel Alloys Through Verification, Validation, and Uncertainty Quantification
,”
IEEE International Conference on Big Data (Big Data)
,
Boston, MA
, pp.
1
9
.
169.
Tapia
,
G.
,
King
,
W. E.
,
Arroyave
,
R.
,
Johnson
,
L.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
J. Manuf. Sci. Eng.
,
140
,
121006
.
170.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2017
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
, pp.
1
13
.
171.
Li
,
J.
,
Jin
,
R.
, and
Yu
,
H. Z.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
.
172.
V&V 50 - Committee Page
, https://cstools.asme.org/csconnect/committeePages.Cfm?Committee=101978604, Accessed October 18, 2018.
You do not currently have access to this content.