Single-point incremental sheet forming (SPISF) is a promising die-less forming technique. It has a variety of applications in many industries, viz., automobile, aerospace, and bone transplants. In SPISF, a sheet of metal is deformed by using numerically controlled single-point, hemispherical end-shaped forming tool, which incrementally deforms the sheet with highly localized plastic deformation. SPISF is a flexible yet relatively slow process when compared with conventional forming techniques like deep drawing and spinning. Since the beginning of die-less forming technology, researchers are recommending it for small batch production system or for customized fabrication. Being a slow process, it still has not achieved wide industrial acceptability. Among several key parameters dictating the process speed, the sheet clamping mechanism is one of the significant parameters of SPISF. Clamping mechanism plays a vital role in its manufacturing lead time. However, research efforts in this direction have been largely neglected. In this investigation, to improve the process speed, a novel electromagnetic clamping mechanism for SPISF is proposed. Detailed numerical and experimental investigations have been carried out to set up its applicability for the SPISF process. From the available literature, it has been found that this type of clamping mechanism in SPISF has not been studied or investigated. The proposed electromagnetic clamping makes the process of sheet clamping faster and convenient, and provides one-click clamping solution. This concept can take the process of incremental sheet forming toward better industrial acceptability. Furthermore, SPISF of symmetric and asymmetric components is conducted to test the feasibility of the concept.

References

References
1.
Matsubara
,
S.
,
1994
, “
Incremental Backward Bulge Forming of a Sheet Metal With a Hemispherical Tool
,”
J. Jpn. Soc. Technol. Plast.
,
35
(
406
), pp.
1311
1316
.
2.
Edward
,
L.
,
1967
, “
Apparatus and Process for Incremental Dieless Forming
,” U.S. Patent No. 3,342,051.https://patents.google.com/patent/US3342051A/en
3.
Mason
,
B.
,
1978
, “
Sheet Metal Forming for Small Batches
,” B.Sc. thesis, University of Nottingham, Nottingham, UK.
4.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann.
,
54
(
2
), pp.
623
650
.
5.
Jackson
,
K.
, and
Allwood
,
J.
,
2009
, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1158
1174
.
6.
Martins
,
P. A. F.
,
Bay
,
N.
,
Skjødt
,
M.
, and
Silva
,
M. B.
,
2008
, “
Theory of Single Point Incremental Forming
,”
CIRP Ann.
,
57
(
1
), pp.
247
252
.
7.
Verbert
,
J.
,
Belkassem
,
B.
,
Henrard
,
C.
,
Habraken
,
A. M.
,
Gu
,
J.
,
Sol
,
H.
, and
Duflou
,
J. R.
,
2008
, “
Multi-Step Toolpath Approach to Overcome Forming Limitations in Single Point Incremental Forming
,”
Int. J. Mater. Form.
,
1
(
Suppl. 1
), pp.
1203
1206
.
8.
Ambrogio
,
G.
,
Filice
,
L.
, and
Manco, G. L.
,
2008
, “
Considerations on the Incremental Forming of Deep Geometries
,”
Int. J. Mater. Form.
,
1
(
1
), pp.
1143
1146
.
9.
Zhu
,
H.
,
Liu
,
Z.
, and
Fu
,
J.
,
2011
, “
Spiral Tool-Path Generation With Constant Scallop Height for Sheet Metal CNC Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9–12
), pp.
911
919
.
10.
Nirala
,
H. K.
,
Jain
,
P. K.
,
Roy
,
J. J.
,
Samal
,
M. K.
, and
Tandon
,
P.
,
2017
, “
An Approach to Eliminate Stepped Features in Multistage Incremental Sheet Forming Process: Experimental and FEA Analysis
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
599
604
.
11.
Nirala
,
H. K.
, and
Agrawal
,
A.
,
2018
, “
Fractal Geometry Rooted Incremental Toolpath for Incremental Sheet Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021005
.
12.
Duflou
,
J.
,
Tunckol
,
Y.
,
Szekeres
,
A.
, and
Vanherck
,
P.
,
2007
, “
Experimental Study on Force Measurements for Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
189
(
1–3
), pp.
65
72
.
13.
Silva
,
M. B.
,
Nielsen
,
P. S.
,
Bay
,
N.
, and
Martins
,
P. A.
,
2011
, “
Failure Mechanisms in Single-Point Incremental Forming of Metals
,”
Int. J. Adv. Manuf. Technol.
,
56
(
9–12
), pp.
893
903
.
14.
Bambach
,
M.
,
2010
, “
A Geometrical Model of the Kinematics of Incremental Sheet Forming for the Prediction of Membrane Strains and Sheet Thickness
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1562
1573
.
15.
Singh
,
A.
, and
Agrawal
,
A.
,
2016
, “
Comparison of Deforming Forces, Residual Stresses and Geometrical Accuracy of Deformation Machining With Conventional Bending and Forming
,”
J. Mater. Process. Technol.
,
234
, pp.
259
271
.
16.
Agrawal
,
A.
,
Reddy
,
N. V.
, and
Dixit
,
P. M.
,
2008
, “
Optimal Blank Shape Prediction Considering Sheet Thickness Variation: An Upper Bound Approach
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
249
258
.
17.
Panjwani
,
D.
,
Priyadarshi
,
S.
,
Jain
,
P. K.
,
Samal
,
M. K.
,
Roy
,
J. J.
,
Roy
,
D.
, and
Tandon
,
P.
,
2017
, “
A Novel Approach Based on Flexible Supports for Forming Non-Axisymmetric Parts in SPISF
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2463
2477
.
18.
Sahu
,
G. N.
,
Saxena
,
S.
,
Jain
,
P. K.
,
Roy
,
J. J.
,
Samal
,
M. K.
, and
Tandon
,
P.
,
2015
, “
Shell Element Formulation Based Finite Element Modeling, Analysis and Experimental Validation of Incremental Sheet Forming Process
,”
ASME
Paper No. IMECE2015-53146.
19.
Sarh
,
B.
,
Asada
,
H.
,
Menon
,
M. C.
, and
Co
,
B.
,
2014
, “
Electromagnetic Clamping Device
,” U.S. Patent No. 8,832,940.
20.
Wilson
,
J. A.
,
Huckey
,
A. M.
,
Nestleroad
,
M. E.
, and
Charlton
,
C. A.
,
2016
, “
Flexible Electromagnetic Clamp
,” U.S. Patent No. 9,496,080.
21.
Sarh
,
B.
,
Asada
,
H.
, and
Menon
,
M. C.
,
2015
, “
Electromagnetic Clamping Method
,” U.S. Patent No. 9,021,704.https://patents.google.com/patent/US9021704
22.
Xu
,
D.
,
Liu
,
X.
,
Fang
,
K.
, and
Fang
,
H.
,
2010
, “
Calculation of Electromagnetic Force in Electromagnetic Forming Process of Metal Sheet
,”
J. Appl. Phys.
,
107
(
12
), p.
124907
.
23.
Karlqvist
,
O.
,
1954
, “
Calculation of the Magnetic Field in the Ferromagnetic Layer of a Magnetic Drum
,” Kungl. Tekniska högskolans handlingar, Transactions of the Royal Institute of Technology Stockholm, Sweden.
24.
Cheng
,
T. C.
,
Tzyy-Ker
,
S. U. E.
,
Chung
,
C. K.
,
Wang
,
C. C.
,
Hsieh
,
H. T.
, and
Li
,
M. F.
,
2008
, “
Electromagnetic Forming Device for Sheet of Material
,” U.S. Patent No. 7,389,664.
25.
Weir
,
D. B.
,
1985
, “Electromagnetic Forming Apparatus,” U.S. Patent No. 4,531,393.
26.
Dassault Systèmes Simulia,
2011
, “
Abaqus 6.11 Theory Manual
,” Dassault Systèmes Simulia, Providence, RI.
27.
PSP
,
2018
, “
430 Stainless Steel
,” accessed Sept. 17, 2018, http://www.pennstainless.com/stainless-grades/400-series-stainless/430-stainless-steel/
28.
Li
,
J.
,
Chong
, L., and
Zhou
,
T.
,
2012
, “
Thickness Distribution and Mechanical Property of Sheet Metal Incremental Forming Based on Numerical Simulation
,”
Trans. Nonferrous Met. Soc. China
,
22
(
Suppl. 1
), pp.
s54
s60
.
29.
Henrard
,
C.
,
2009
, “
Numerical Simulations of the Single Point Incremental Forming Process
,”
Ph.D. dissertation
, The University of Liège, Liège, Belgium.http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-04182009-184505/unrestricted/Ph.D._Henrard_Full.pdf
30.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
31.
ABAQUS,
2002
, “
ABAQUS/Explicit Theory Manual Version 6.3
,” Hibbitt, Karlsson & Sorensen Inc., Providence, RI.
32.
Banerjee
,
A.
,
Dhar
,
S.
,
Acharyya
,
S.
,
Datta
,
D.
, and
Nayak
,
N.
,
2015
, “
Determination of Johnson Cook Material and Failure Model Constants and Numerical Modelling of Charpy Impact Test of Armour Steel
,”
Mater. Sci. Eng.
,
640
, pp.
200
209
.
33.
Liu
,
Z.
,
Liu
,
S.
,
Li
,
Y.
, and
Meehan
,
P. A.
,
2014
, “
Modeling and Optimization of Surface Roughness in Incremental Sheet Forming Using a Multi-Objective Function
,”
Mater. Manuf. Processes
,
29
(
7
), pp.
808
818
.
34.
SAV
,
2018
, “
Magnetic Workholding: Workholding With Precision and Performance
,” accessed Sept. 17, 2018, http://en.sav-spanntechnik.de/pdf/catalogues/SAV_Magnetic_Workholding_V2013-12.pdf
35.
Aldridge
,
J. L.
,
Witt
,
D. A.
,
Mootoo
,
M. E.
,
Huang
,
Z. F.
,
Dietz
,
T. G.
, and
Banks
,
R. M.
,
2014
, “
Surgical Instrument With Magnetic Clamping Force
,” U.S. Patent No. 8,628,529.
36.
Agashe
,
U. C.
,
Ranpise
,
A.
,
Mahajan
,
M.
, and
Shrirame
,
A.
,
2018
, “
Study of Fixture and Its Modifications
,”
Int. J. Res. Appl. Sci. Eng. Technol.
,
6
(
4
), pp.
728
733
.https://www.ijraset.com/fileserve.php?FID=15593
You do not currently have access to this content.