An integrated flow-stress (IFS) model provides a seamless and mechanistic connection between the two distinct regimes during the manufacturing process of composite materials, namely, fluid flow in the pregelation stage of the thermoset resin and stress development in the composite when it acts as a solid material. In this two-part paper, the two- and three-phase isotropic IFS models previously developed by the authors are extended to the general case of composite materials with orthotropic constituents. Part I presents the two-phase, fluid-solid, orthotropic model formulation for the case where the fluid phase solidifies during the course of curing. Part II extends the orthotropic formulation to a three-phase model that includes a gas phase as the third constituent of the composite material system. A broader definition of material properties in poroelasticity formulation is adopted in the development of the general orthotropic formulation. The model is implemented in a two-dimensional (2D) plane strain u-v-P finite element (FE) code and its capability in predicting the flow-compaction behavior and stress development is demonstrated through application to a case study involving an L-shaped unidirectional laminate undergoing curing on a conforming convex tool. Comparison of the results with those obtained from sole modeling of the stress development reveals the importance of capturing the simultaneous and interactive effect of the mechanisms involved during the entire process cycle using an IFS modeling approach presented in this paper.

References

References
1.
Loos
,
A. C.
, and
Springer
,
G. S.
,
1983
, “
Curing of Epoxy Matrix Composites
,”
J. Compos. Mater.
,
17
(
2
), pp.
135
169
.
2.
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
,
1991
, “
Two-Dimensional Cure Simulation of Thick Thermosetting Composites
,”
J. Compos. Mater.
,
25
(
3
), pp.
239
273
.
3.
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
,
1992
, “
Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates
,”
J. Compos. Mater.
,
26
(
5
), pp.
626
660
.
4.
White
,
S. R.
, and
Hahn
,
H. T.
,
1992
, “
Process Modeling of Composite Materials: Residual Stress Development During Curing—Part I: Model Formulation
,”
J. Compos. Mater.
,
26
(
16
), pp.
2402
2422
.
5.
Johnston
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2001
, “
A Plane Strain Model for Process-Induced Deformation of Laminated Composite Structures
,”
J. Compos. Mater.
,
35
(
16
), pp.
1435
1469
.
6.
Johnston
,
A.
,
Hubert
,
P.
,
Fernlund
,
G.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
1996
, “
Process Modeling of Composite Structures Employing a Virtual Autoclave Concept
,”
J. Sci. Eng. Compos. Mater.
,
5
(3–4), pp.
235
252
.
7.
Hubert
,
P.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
1999
, “
A Two-Dimensional Flow Model for the Process Simulation of Complex Shape Composite Laminates
,”
Int. J. Numer. Methods Eng.
,
44
(
1
), pp.
1
26
.
8.
Arafath
,
A. R. A.
,
2007
, “
Efficient Numerical Techniques for Predicting Process-Induced Stresses and Deformations in Composite Structures
,”
Ph.D. dissertation
, The University of British Columbia, Vancouver, BC, Canada.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0063214
9.
Hubert
,
P.
,
1996
, “
Aspects of Flow and Compaction of Laminated Composite Shapes During Cure
,”
Ph.D. dissertation
, The University of British Columbia, Vancouver, BC, Canada.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0078499
10.
Terzaghi
,
K.
,
1943
,
Theoretical Soil Mechanics
,
Wiley
,
New York
.
11.
Zobeiry
,
N.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2005
, “
Differential Implementation of the Viscoelastic Response of a Curing Thermoset Matrix for Composites Processing
,”
ASME J. Eng. Mater. Technol.
,
128
(
1
), pp.
90
95
.
12.
Zobeiry
,
N.
,
2006
, “
Viscoelastic Constitutive Models for Evaluation of Residual Stresses in Thermoset Composites During Cure
,”
Ph.D. dissertation
, The University of British Columbia, Vancouver, BC, Canada.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0063254
13.
Zobeiry
,
N.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2010
, “
Computationally Efficient Pseudo-Viscoelastic Models for Evaluation of Residual Stresses in Thermoset Polymer Composites During Cure
,”
Composites, Part A
,
41
(
2
), pp.
247
256
.
14.
Zobeiry
,
N.
,
Malek
,
S.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2016
, “
A Differential Approach to Finite Element Modelling of Isotropic and Transversely Isotropic Viscoelastic Materials
,”
Mech. Mater.
,
97
, pp.
76
91
.
15.
Lacoste
,
E.
,
Szymanska
,
K.
,
Terekhina
,
S.
,
Fréour
,
S.
,
Jacquemin
,
F.
, and
Salvia
,
M.
,
2013
, “
A Multi-Scale Analysis of Local Stresses Development During the Cure of a Composite Tooling Material
,”
Int. J. Mater. Form.
,
6
(
4
), pp.
467
482
.
16.
Belnoue
,
J. P.
,
Nixon-Pearson
,
O. J.
,
Ivanov
,
D.
, and
Hallett
,
S. R.
,
2016
, “
A Novel Hyper-Viscoelastic Model for Consolidation of Toughened Prepregs Under Processing Conditions
,”
Mech. Mater.
,
97
, pp.
118
134
.
17.
Belnoue
,
J.
,
Nixon-Pearson
,
O. J.
,
Thompson
,
A. J.
,
Ivanov, D. S.
,
Potter, K. D.
, and
Hallett, S. R.
,
2018
, “
Consolidation-Driven Defect Generation in Thick Composite Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071006
.
18.
Haghshenas
,
S. M.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2018
, “
Integration of Resin Flow and Stress Development in Process Modelling of Composites—Part I: Isotropic Formulation
,”
J. Compos. Mater.
,
52
(
23
), pp.
3137
3155
.
19.
Haghshenas
,
S. M.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2018
, “
Integration of Resin Flow and Stress Development in Process Modelling of Composites—Part II: Transversely Isotropic Formulation
,”
J. Compos. Mater.
,
52
(
23
), pp.
3157
3171
.
20.
Niaki
,
S. A.
,
2017
, “
A Three-Phase Integrated Flow-Stress Framework for Process Modelling of Composite Materials
,”
Ph.D. dissertation
, The University of British Columbia, Vancouver, BC, Canada.https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0355735
21.
Niaki
,
S. A.
,
Forghani
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2017
, “
A Two-Phase Integrated Flow-Stress Process Model for Composites With Application to Highly Compressible Phases
,”
Mech. Mater.
,
109
, pp.
51
66
.
22.
Niaki
,
S. A.
,
Forghani
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2018
, “
A Three-Phase Integrated Flow-Stress Model for Processing of Composites
,”
Mech. Mater.
,
117
, pp.
152
164
.
23.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
24.
Biot
,
M. A.
, and
Willis
,
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME J. Appl. Mech.
,
24
, pp.
594
601
.
25.
Zienkiewicz
,
O. C.
, and
Shiomi
,
T.
,
1984
, “
Dynamic Behaviour of Saturated Porous Media; the Generalized Biot Formulation and Its Numerical Solution
,”
Int. J. Numer. Anal. Methods Geomech.
,
8
(
1
), pp.
71
96
.
26.
Lewis
,
R. W.
, and
Schrefler
,
B. A.
,
1998
,
The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media
,
Wiley
,
New York
.
27.
Niaki
,
S. A.
,
Forghani
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2017
, “
A Two-Phase Integrated Flow-Stress Process Model for Polymeric Composite Materials
,”
Tenth Canadian International Conference on Composites (CANCOM 2017)
, Ottawa, ON, Canada, July 17–20, p.
20179
.
28.
White
,
S. R.
, and
Kim
,
Y. K.
,
1998
, “
Process-Induced Residual Stress Analysis of AS4/3501-6 Composite Material
,”
Mech. Compos. Mater.
,
5
(
2
), pp.
153
186
.
29.
Cai
,
Z.
, and
Gutowski
,
T. G.
,
1992
, “
The 3-D Deformation Behavior of a Lubricated Fiber Bundle
,”
J. Compos. Mater.
,
26
(
8
), pp.
1207
1237
.
30.
Lee
,
W. I.
,
Loos
,
A. C.
, and
Springer
,
G. S.
,
1982
, “
Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin
,”
J. Compos. Mater.
,
16
(
6
), pp.
510
520
.
31.
Hubert
,
P.
, and
Poursartip
,
A.
,
2001
, “
Aspects of the Compaction of Composite Angle Laminates: An Experimental Investigation
,”
J. Compos. Mater.
,
35
(
1
), pp.
2
26
.
32.
Niaki
,
S. A.
,
Forghani
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2018
, “
An Orthotropic Integrated Flow-Stress Model for Process Simulation of Composite Materials—Part II: Three-Phase Systems
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p. 031011.
33.
Carroll
,
M. M.
,
1979
, “
An Effective Stress Law for Anisotropic Elastic Deformation
,”
J. Geophys. Res.: Solid Earth
,
84
(
B13
), pp.
7510
7512
.
34.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
A Reformation of the Equations of Anisotropic Poroelasticity
,”
ASME J. App. Mech.
,
58
(
3
), pp.
612
616
.
35.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. App. Phys.
,
26
(
2
), pp.
182
185
.
36.
Cheng
,
A.
,
1997
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
2
), pp.
199
205
.
You do not currently have access to this content.