Face milling commonly generates surface quality of variation, is especially severe for milling of large-scale components with complex surface geometry such as cylinder block, engine head, and valve body. Thus surface variation serves as an important indicator both for machining parameter selection and components' service performance such as sealing, energy consumption, and emission. An efficient and comprehensive numerical model is highly desired for the prediction of surface variation of entire surface. This study proposes a coupled numerical simulation method, updating finite element (FE) model iteratively based on integration of data from abaqus and matlab, to predict surface variation induced by face milling of large-scale components with complex surfaces. Using the coupled model, three-dimensional (3D) variation of large-scale surface can be successfully simulated by considering face milling process including dynamic milling force, spiral curve of milling trajectory, and intermittently rotating contact characteristics. Surface variation is finally represented with point cloud from iterative FE analysis and verified by face milling experiment. Comparison between measured and predicted results shows that the new prediction method can simulate surface variation of complex components well. Based on the verified model, a set of analyses are conducted to evaluate the effects of local stiffness nonhomogenization and milling force variation on machined surface variation. It demonstrates that surface variation with surface peaks and concaves is strongly correlated with local stiffness nonhomogenization especially in feed direction. And thus the coupled prediction method provides a theoretical and efficient way to study surface variation induced by face milling of large-scale complex components.

References

References
1.
Liao
,
Y. G.
, and
Hu
,
S. J.
,
2001
, “
An Integrated Model of a Fixture-Workpiece System for Surface Quality Prediction
,”
Int. J. Adv. Manuf. Technol.
,
17
(
11
), pp.
810
818
.
2.
Carvalho
,
H. M. B. D.
,
Gomes
,
J. D. O.
,
Schmidt
,
M. A.
, and
Brandão
,
V. L. C.
,
2015
, “
Vibration Analysis and Energy Efficiency in Interrupted Face Milling Processes
,”
Procedia CIRP
,
29
, pp.
245
250
.
3.
Xie
,
J. Q.
,
Agapiou
,
J. S.
,
Stephenson
,
D. A.
, and
Hilber
,
P.
,
2003
, “
Machining Quality Analysis of an Engine Cylinder Head Using Finite Element Methods
,”
J. Manuf. Processes
,
5
(
2
), pp.
170
184
.
4.
Du
,
S.
,
Liu
,
C.
, and
Huang
,
D.
,
2015
, “
A Shearlet-Based Separation Method of 3D Engineering Surface Using High Definition Metrology
,”
Precis. Eng.
,
40
, pp.
55
73
.
5.
Gu
,
F.
,
Melkote
,
S. N.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
1997
, “
A Model for the Prediction of Surface Flatness in Face Milling
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
476
484
.
6.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2011
, “
Improvement of Surface Flatness in Face Milling Based on 3-D Holographic Laser Metrology
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
483
490
.
7.
Liu
,
S.
,
Jin
,
S.
,
Zhang
,
X.
,
Wang
,
L.
,
Mei
,
B.
, and
Hu
,
B.
,
2017
, “
Controlling Topography of Machined Surface for Adhesive-Sealing
,”
ASME
Paper No. MSEC2017-2674.
8.
Rao
,
R. V.
,
2013
,
Advanced Modeling and Optimization of Manufacturing Processes
,
Springer
,
Berlin
, pp.
317
338
.
9.
Benardos
,
P. G.
, and
Vosniakos
,
G. C.
,
2003
, “
Predicting Surface Roughness in Machining: A Review
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
833
844
.
10.
Shi
,
Z. Y.
,
Liu
,
L. N.
, and
Liu
,
Z. Q.
,
2015
, “
Influence of Dynamic Effects on Surface Roughness for Face Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
80
(
9–12
), pp.
1823
1831
.
11.
Hessainia
,
Z.
,
Belbah
,
A.
,
Yallese
,
M. A.
,
Mabrouki
,
T.
, and
Rigal
,
J.
,
2013
, “
On the Prediction of Surface Roughness in the Hard Turning Based on Cutting Parameters and Tool Vibrations
,”
Measurement
,
46
(
5
), pp.
1671
1681
.
12.
Felhő
,
C.
,
Karpuschewski
,
B.
, and
Kundrák
,
J.
,
2015
, “
Surface Roughness Modelling in Face Milling
,”
Procedia CIRP
,
31
, pp.
136
141
.
13.
Wang
,
M.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Predicting Machined Surface Topography Based on High Definition Metrology
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
1013
1017
.
14.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2009
, “
Improvement of Surface Flatness in Face Milling by Varying the Tool Cutting Depth and Feed Rate
,”
ASME
Paper No. MSEC2009-84208.
15.
Suriano
,
S.
,
Wang
,
H.
,
Shao
,
C.
,
Hu
,
S. J.
, and
Sekhar
,
P.
,
2015
, “
Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations
,”
IIE Trans.
,
47
(
10
), pp.
1033
1052
.
16.
Hai
,
T. N.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2013
, “
Characterization of Cutting Force Induced Surface Shape Variation in Face Milling Using High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
135
(4), p. 041014.
17.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2014
, “
Modeling Cutter Tilt and Cutter-Spindle Stiffness for Machine Condition Monitoring in Face Milling Using High-Definition Surface Metrology
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
1323
1335
.
18.
Tai
,
B. L.
,
Wang
,
H.
,
Hai
,
N.
,
Hu
,
S. J.
, and
Shih
,
A.
,
2012
, “
Surface Variation Reduction for Face Milling Based on High-Definition Metrology
,”
ASME
Paper No. MSEC2012-7208.
19.
Hai
,
T. N.
,
Wang
,
H.
,
Tai
,
B. L.
,
Ren
,
J.
,
Hu
,
S. J.
, and
Shih
,
A.
,
2016
, “
High-Definition Metrology Enabled Surface Variation Control by Cutting Load Balancing
,”
ASME J. Manuf. Sci. Eng.
,
138
(2), p. 021010.
20.
Rai
,
J. K.
, and
Xirouchakis
,
P.
,
2008
, “
Finite Element Method Based Machining Simulation Environment for Analyzing Part Errors Induced During Milling of Thin-Walled Components
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
629
643
.
21.
Sundararaman
,
K. A.
,
Guharaja
,
S.
,
Padmanaban
,
K. P.
, and
Sabareeswaran
,
M.
,
2014
, “
Design and Optimization of Machining Fixture Layout for End-Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
669
679
.
22.
Wan
,
M.
,
Zhang
,
W. H.
,
Qiu
,
K. P.
,
Gao
,
T.
, and
Yang
,
Y. H.
,
2005
, “
Numerical Prediction of Static Form Errors in Peripheral Milling of Thin-Walled Workpieces With Irregular Meshes
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
13
22
.
23.
Kang
,
Y.
, and
Wang
,
Z.
,
2013
, “
Two Efficient Iterative Algorithms for Error Prediction in Peripheral Milling of Thin-Walled Workpieces Considering the In-Cutting Chip
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
55
61
.
24.
Dong
,
Z.
,
Jiao
,
L.
,
Wang
,
X.
,
Liang
,
Z.
,
Liu
,
Z.
, and
Yi
,
J.
,
2016
, “
FEA-Based Prediction of Machined Surface Errors for Dynamic Fixture-Workpiece System During Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
299
315
.
25.
Liu
,
E. A.
, and
Zou
,
Q.
,
2011
, “
Machined Surface Error Analysis—A Face Milling Approach
,”
J. Adv. Manuf. Syst.
,
10
(
2
), pp.
293
307
.
26.
Mathieu
,
F.
,
Leclerc
,
H.
,
Hild
,
F.
, and
Roux
,
S.
,
2015
, “
Estimation of Elastoplastic Parameters Via Weighted FEMU and Integrated-DIC
,”
Exp. Mech.
,
55
(
1
), pp.
105
119
.
27.
Lin
,
J.
,
Jin
,
S.
,
Zheng
,
C.
,
Li
,
Z.
, and
Liu
,
Y.
,
2014
, “
Compliant Assembly Variation Analysis of Aeronautical Panels Using Unified Substructures With Consideration of Identical Parts
,”
Comput.-Aided Des.
,
57
, pp.
29
40
.
28.
Heikkala
,
J.
,
1995
, “
Determining of Cutting-Force Components in Face Milling
,”
J. Mater. Process. Technol.
,
52
(
1
), pp.
1
8
.
You do not currently have access to this content.