Chemical mechanical planarization (CMP) has been widely used in the semiconductor industry to create planar surfaces with a combination of chemical and mechanical forces. A CMP process is very complex because several chemical and mechanical phenomena (e.g., surface kinetics, electrochemical interfaces, contact mechanics, stress mechanics, hydrodynamics, and tribochemistry) are involved. Predicting the material removal rate (MRR) in a CMP process with sufficient accuracy is essential to achieving uniform surface finish. While physics-based methods have been introduced to predict MRRs, little research has been reported on monitoring and predictive modeling of the MRR in CMP. This paper presents a novel decision tree-based ensemble learning algorithm that can train the predictive model of the MRR. The stacking technique is used to combine three decision tree-based learning algorithms, including the random forests (RF), gradient boosting trees (GBT), and extremely randomized trees (ERT), via a meta-regressor. The proposed method is demonstrated on the data collected from a CMP tool that removes material from the surface of wafers. Experimental results have shown that the decision tree-based ensemble learning algorithm using stacking can predict the MRR in the CMP process with very high accuracy.

References

References
1.
Krishnan
,
M.
,
Nalaskowski
,
J. W.
, and
Cook
,
L. M.
,
2009
, “
Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms
,”
Chem. Rev.
,
110
(
1
), pp.
178
204
.
2.
Steigerwald
,
J. M.
,
Murarka
,
S. P.
, and
Gutmann
,
R. J.
,
2008
,
Chemical Mechanical Planarization of Microelectronic Materials
,
Wiley
, New York.
3.
Nanz
,
G.
, and
Camilletti
,
L. E.
,
1995
, “
Modeling of Chemical-Mechanical Polishing: A Review
,”
IEEE Trans. Semicond. Manuf.
,
8
(
4
), pp.
382
389
.
4.
Evans
,
C.
,
Paul
,
E.
,
Dornfeld
,
D.
,
Lucca
,
D.
,
Byrne
,
G.
,
Tricard
,
M.
,
Klocke
,
F.
,
Dambon
,
O.
, and
Mullany
,
B.
,
2003
, “
Material Removal Mechanisms in Lapping and Polishing
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
611
633
.
5.
Luo
,
Q.
,
Ramarajan
,
S.
, and
Babu
,
S.
,
1998
, “
Modification of the Preston Equation for the Chemical–Mechanical Polishing of Copper
,”
Thin Solid Films
,
335
(
1–2
), pp.
160
167
.
6.
Luo
,
J.
, and
Dornfeld
,
D. A.
,
2001
, “
Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling
,”
IEEE Trans. Semicond. Manuf.
,
14
(
2
), pp.
112
133
.
7.
Yu
,
T.
,
Asplund
,
D. T.
,
Bastawros
,
A. F.
, and
Chandra
,
A.
,
2016
, “
Performance and Modeling of Paired Polishing Process
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
49
57
.
8.
Kong
,
Z.
,
Oztekin
,
A.
,
Beyca
,
O. F.
,
Phatak
,
U.
,
Bukkapatnam
,
S. T.
, and
Komanduri
,
R.
,
2010
, “
Process Performance Prediction for Chemical Mechanical Planarization (CMP) by Integration of Nonlinear Bayesian Analysis and Statistical Modeling
,”
IEEE Trans. Semicond. Manuf.
,
23
(
2
), pp.
316
327
.
9.
Rao
,
P. K.
,
Beyca
,
O. F.
,
Kong
,
Z.
,
Bukkapatnam
,
S. T.
,
Case
,
K. E.
, and
Komanduri
,
R.
,
2015
, “
A Graph-Theoretic Approach for Quantification of Surface Morphology Variation and Its Application to Chemical Mechanical Planarization Process
,”
IIE Trans.
,
47
(
10
), pp.
1088
1111
.
10.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(C), pp. 144–156.
11.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
12.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Kumara
,
S.
, and
Gao
,
R. X.
,
2018
, “
Cloud-Based Parallel Machine Learning for Tool Wear Prediction
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041005
.
13.
Lin
,
S.-C.
, and
Wu
,
M.-L.
,
2002
, “
A Study of the Effects of Polishing Parameters on Material Removal Rate and Non-Uniformity
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
99
103
.
14.
Lee
,
H.
, and
Jeong
,
H.
,
2011
, “
A Wafer-Scale Material Removal Rate Profile Model for Copper Chemical Mechanical Planarization
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
395
403
.
15.
Lee
,
H.
,
Jeong
,
H.
, and
Dornfeld
,
D.
,
2013
, “
Semi-Empirical Material Removal Rate Distribution Model for SiO2 Chemical Mechanical Polishing (CMP) Processes
,”
Precis. Eng.
,
37
(
2
), pp.
483
490
.
16.
Lih
,
W.-C.
,
Bukkapatnam
,
S. T.
,
Rao
,
P.
,
Chandrasekharan
,
N.
, and
Komanduri
,
R.
,
2008
, “
Adaptive Neuro-Fuzzy Inference System Modeling of MRR and WIWNU in CMP Process With Sparse Experimental Data
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
1
), pp.
71
83
.
17.
Wang
,
P.
,
Gao
,
R. X.
, and
Yan
,
R.
,
2017
, “
A Deep Learning-Based Approach to Material Removal Rate Prediction in Polishing
,”
CIRP Ann.
,
66
(
1
), pp.
429
432
.
18.
Jia
,
X.
,
Di
,
Y.
,
Feng
,
J.
,
Yang
,
Q.
,
Dai
,
H.
, and
Lee
,
J.
,
2018
, “
Adaptive Virtual Metrology for Semiconductor Chemical Mechanical Planarization Process Using GMDH-Type Polynomial Neural Networks
,”
J. Process Control
,
62
, pp.
44
54
.
19.
Rao
,
P. K.
,
Bhushan
,
M. B.
,
Bukkapatnam
,
S. T.
,
Kong
,
Z.
,
Byalal
,
S.
,
Beyca
,
O. F.
,
Fields
,
A.
, and
Komanduri
,
R.
,
2014
, “
Process-Machine Interaction (PMI) Modeling and Monitoring of Chemical Mechanical Planarization (CMP) Process Using Wireless Vibration Sensors
,”
IEEE Trans. Semicond. Manuf.
,
27
(
1
), pp.
1
15
.
20.
Džeroski
,
S.
, and
Ženko
,
B.
,
2004
, “
Is Combining Classifiers With Stacking Better Than Selecting the Best One?
,”
Mach. Learn.
,
54
(
3
), pp.
255
273
.
21.
Zhou
,
Z.-H.
,
2012
,
Ensemble Methods: Foundations and Algorithms
, Chapman & Hall, Boca Raton, FL.
22.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
23.
Li
,
Z.
,
Wu
,
D.
,
Hu
,
C.
, and
Terpenny
,
J.
,
2017
, “
An Ensemble Learning-Based Prognostic Approach With Degradation-Dependent Weights for Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
, (in Press).
24.
Geurts
,
P.
,
Ernst
,
D.
, and
Wehenkel
,
L.
,
2006
, “
Extremely Randomized Trees
,”
Mach. Learn.
,
63
(
1
), pp.
3
42
.
25.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
26.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by random Forest
,”
R News
,
2
(
3
), pp.
18
22
. https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
27.
Ho
,
T. K.
,
1998
, “
The Random Subspace Method for Constructing Decision Forests
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
20
(
8
), pp.
832
844
.
28.
Friedman
,
J. H.
,
2002
, “
Stochastic Gradient Boosting
,”
Comput. Stat. Data Anal.
,
38
(
4
), pp.
367
378
.
29.
Rosca
,
N. P. J.
,
2016
, “
PHM Society Data Challenge
,” PHM Society, Denver, CO, accessed Nov. 30, 2018, https://www.phmsociety.org/events/conference/phm/16/data-challenge
30.
Ki Bum, L.
, and
Ouk Kim, C.
, 2018, “
Recurrent Feature-Incorporated Convolutional Neural Network for Virtual Metrology of the Chemical Mechanical Planarization Process
,”
J. Intell. Manuf.
, pp. 1–14.https://link.springer.com/article/10.1007/s10845-018-1437-4
31.
Greenwood
,
J.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, A
,
295
(
1442
), pp.
300
319
.
32.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
33.
Seber
,
G. A.
, and
Lee
,
A. J.
,
2012
,
Linear Regression Analysis
,
Wiley
, Hoboken, NJ.
34.
Makalic
,
E.
, and
Schmidt
,
D. F.
,
2016
, “
High-Dimensional Bayesian Regularised Regression With the BayesReg Package
,” preprint
arXiv:1611.06649
.https://arxiv.org/abs/1611.06649
35.
Kang
,
P.
,
Kim
,
D.
, and
Cho
,
S.
,
2016
, “
Semi-Supervised Support Vector Regression Based on Self-Training With Label Uncertainty: An Application to Virtual Metrology in Semiconductor Manufacturing
,”
Expert Syst. Appl.
,
51
, pp.
85
106
.
36.
Solomatine
,
D. P.
, and
Shrestha
,
D. L.
, 2004, “
AdaBoost.RT: A Boosting Algorithm for Regression Problems
,”
IEEE
International Joint Conference on Neural Networks
,
Budapest, Hungary
,
July 23–29
, pp.
1163
1168
.
You do not currently have access to this content.